首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical properties of highly strained GaInAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy with Sb assistance are investigated. The samples grown by Sb incorporation and Sb pre-deposition methods display high room-temperature photoluminescence (PL) intensity at extended 10ng wavelength. This result is explained by the surfactant effects of Sb during the growth of GaInAs/GaAs QW systems. An abnormal Sshaped temperature dependence of the PL peak position is found in the In0.42Ga0.58As/GaAs triple QWs sample grown with Sb pre-deposition. By investigating the transmission electron microscope images and time-resolved PL spectra, it is found that the S-shaped temperature dependence of the PL peak position originates from the exciton 10calization effect brought by the Sb-rich clusters on the QW interface.  相似文献   

2.
Molecular beam epitaxy growth of GaAs on an offcut Ge (100) substrate has been systemically investigated. A high quality GaAs/Ge interface and GaAs film on Ge have been achieved. High temperature annealing before GaAs deposition is found to be indispensable to avoid anti-phase domains. The quality of the GaAs film is found to strongly depend on the GaAs/Ge interface and the beginning of GaAs deposition. The reason why both high temperature annealing and GaAs growth temperature can affect epitaxial GaAs film quality is discussed. High quality In0.17Ga0.83As/GaAs strained quantum wells have also been achieved on a Ge substrate. Samples show flat surface morphology and narrow photoluminescence line width compared with the same structure sample grown on a GaAs substrate. These results indicate a large application potential for III--V compound semiconductor optoelectronic devices on Ge substrates.  相似文献   

3.
The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si(100) substrate.Here the direct epitaxial growth condition of 1.3-μm InAs/GaAs quantum on a Si substrate is further investigated using atomic force microscopy,etch pit density and temperature-dependent photoluminescence(PL) measurements.The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial GaAs nucieation temperature and thickness with strongest room-temperature emission at 400℃(170nm nucieation layer thickness),due to the lower density of defects generated under this growth condition,and stronger carrier confinement within the quantum dots.  相似文献   

4.
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.  相似文献   

5.
梁松  朱洪亮  潘教青  王圩 《中国物理》2006,15(5):1114-1119
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.  相似文献   

6.
Photoluminescence (PL) spectra of the GaInNAs/GaAs single quantum well (SQW) with different N compositions are carefully studied in a range of temperatures and excitation power densities. The anomalous S-shape temperature dependence of the PL peak is analysed based on the competition and switching-over between the peaks related to N-induced localized states and the peak related to interband excitonic recombination. It is found that with increasing N composition, the localized energy increases and the turning point of the S-shape temperature dependence occurs at higher temperature, where the localized carriers in the handrail states obtain enough thermal activation energy to be dissociated and delocalized. The rapid thermal annealing (RTA)effectively reduces the localized energy and causes a decrease of the switching-over temperature.  相似文献   

7.
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities.The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation.By careful inspection,especially for the PL under lower excitation power density,two near bandedge peaks are well identified.These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations,respectively.It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs.A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.  相似文献   

8.
The initial growth stage of GaSb on GaAs(001) by low pressure metal–organic chemical vapor deposition(MOCVD)is investigated. The dependence of the nucleation on growth temperature, growth pressure, and vapor V/III ratio is studied by means of atomic force microscopy. The nucleation characteristics include the island density, size, and size uniformity distribution. The nucleation mechanism is discussed by the effects of growth temperature, growth pressure, and vapor V/III ratio on the density, size, and size uniformity of GaSb islands. With the growth temperature increasing from 500℃ to610℃ and the growth pressure increasing from 50 mbar to 1000 mbar(1 mbar = 105Pa), the island density first increases and then decreases; with the V/III ratio increasing from 0.5 to 3, the trend is contrary.  相似文献   

9.
A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 μm at room temperature, and the density of the QDs is in the range of 4× 10^9-8 ×10^9cm^-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoeleetronic and quantum functional devices.  相似文献   

10.
ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition(MOCVD).It is observed that when the growth temperature is low,the stoichiometric ratio between Zn and O atoms has a large deviation from the ideal ratio of 1:1.The ZnO grains in the film have small sizes and are not well crystallized,resulting in a poor photoluminescence(PL) property.When the temperature is increased to an appropriate value,the Zn/O ratio becomes optimized,and most of Zn and O atoms are combined into Zn-O bonds.Then the film has good crystal quality and good PL property.If the temperature is fairly high,the interfacial mutual diffusion of atoms between the substrate and the epitaxial film appears,and the desorption process of the oxygen atoms is enhanced.However,it has no effect on the film property.The film still has the best crystal quality and PL property.  相似文献   

11.
刘发民  张立德  李国华 《中国物理》2005,14(10):2145-2148
The composite films of the nanocrystMline GaAs(1-x)Sbx-SiO2 have been successfully deposited on glass and GaSb substrates by radio frequency magnetron co-sputtering. The 10K photoluminescence (PL) properties of the nanocrystalline GaAs(1-x)Sbx indicated that the PL peaks of the GaAs(1-x)Sbx nanocrystals follow the quantum confinement model very closely. Optical transmittance spectra showed that there is a large blue shift of optical absorption edge in nanocrystMline GaAs(1-x)Sbx-SiO2 composite films, as compared with that of the corresponding bulk semiconductor, which is due to the quantum confinement effect.  相似文献   

12.
High-strain InGaAs/GaAs quantum wells (QWs) are grown by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). Photoluminescence (PL) at room temperature is applied for evaluation of the optical property. The influence of growth temperature, V/III ratio, and growth rate on PL characteristic are investigated. It is found that the growth temperature and V/III ratio have strong effects on the peak wavelength and PL intensity. The full-width at half-maximum (FWHM) of PL peak increases with higher growth rate of InGaAs layer. The FWHM of the PL peak located at 1039 nm is 20.1 meV, which grows at 600 ℃ with V/ III ratio of 42.7 and growth rate of 0.96 μm/h.  相似文献   

13.
刘宁  金鹏  王占国 《中国物理 B》2012,(11):410-413
We report the effect of the GaAs spacer layer thickness on the photoluminescence(PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots(QDs).A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer.We investigate the optical and the structural properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses.The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.  相似文献   

14.
Self-assembled quantum dots capping with a GaAs/Gasb combined strain-reduced layer (CSRL) are grown by MBE. Their structural and optical properties are investigated by AFM and photoluminescence (PL). PL measurements have shown that stronger emission about 1.3μm can be obtained by Sb irradiation and capping QDs with 3 ML GaAs/2 ML GaSh CSRL at room temperature. The full width at half maximum (FWHM) of the PL spectrum is about 20.2 meV (19.9 meV) at room temperature (2OK), indicating that the QDs have high uniform, The result of FWHM is much better than the recently reported result, which is due to the fact that lower QD growth rate and growth interruption after the QDs deposition are adopted in our experiments.  相似文献   

15.
The GaSb-based laser shows its superiority in the 3–4 μm wavelength range. However, for a quantum well(QW) laser structure of InGaAsSb/AlGaInAsSb multiple-quantum well(MQW) grown on GaSb, uniform content and high compressive strain in InGaAsSb/AlGaInAsSb are not easy to control. In this paper, the influences of the growth temperature and compressive strain on the photoluminescence(PL) property of a 3.0-μm InGaAsSb/AlGaInAsSb MQW sample are analyzed to optimize the growth parameters. Comparisons among the PL spectra of the samples indicate that the In0.485GaAs0.184Sb/Al0.3Ga0.45In0.25As0.22Sb0.78MQW with 1.72% compressive strain grown at 460 C posseses the optimum optical property. Moreover, the wavelength range of the MQW structure is extended to 3.83 μm by optimizing the parameters.  相似文献   

16.
High-quality GaAs films with fine surfaces and GaAs/Ge interfaces on Ge have been achieved via molecular beam epitaxy. The influence of low temperature annealing and low temperature epitaxy on the quality of the film when GaAs is grown on a (100) 6 ° offcut towards [111] Ge substrate are investigated by analyzing and comparing the GaAs films that are fabricated via three different processes. A low temperature annealing process after high temperature annealing and a low temperature epitaxy process after the initial GaAs growth play a vital role in improving the quality of GaAs film on a Ge substrate.  相似文献   

17.
刘泉林  于广华  姜勇 《中国物理 B》2009,18(3):1266-1269
This paper investigates the effect of growth temperature on morphology, structure and photoluminescence (PL) of Tb-doped boron nitride (BN) films grown by magnetron sputtering, and the relationships of growth-temperature-structure-PL by scanning electron microscopy, transmission electron microscopy and PL. The characteristic emission lines of the Tb3+ were observed in the PL spectra at room temperature. The 473-K-grown film is mainly consisted of amorphous BN particles. With the growth temperature increasing up to 1273 K, the amount of amorphous BN decreases, while the amount of turbostratic BN increases. Correspondingly, the PL intensities from the Tb3+ ions increase with the increase of temperature in the range of 473--1273 K.  相似文献   

18.
We report on the Au-assisted vapour-liquid-solid(VLS) growth of GaAs/InxGa1-xAs/GaAs(0.2 ≤ x ≤ 1) axial double-heterostructure nanowires on GaAs(111) B substrates via the metal-organic chemical vapor deposition(MOCVD) technique.The influence of the indium(In) content in an Au particle on the morphology of nanowires is investigated systematically.A short period of pre-introduced In precursor before the growth of InxGa1-xAs segment,coupled with a group III precursor interruption,is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1-xAs section.The nanowire morphology,such as kinking and tapering,are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism.  相似文献   

19.
ZnS films were prepared by pulsed laser deposition (PLD) on porous silicon (PS) substrates. This paper investigates the effect of annealing temperature on the structural, morphological, optical and electrical properties of ZnS/PS composites by x-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) and I--V characteristics. It is found that the ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction, and the intensity of diffraction peak increases with increasing annealing temperature, which is attributed to the grain growth and the enhancement of crystallinity of ZnS films. The smooth and uniform surface of the as-prepared ZnS/PS composite becomes rougher through annealing treatment, which is related to grain growth at the higher annealing temperature. With the increase of annealing temperature, the intensity of self-activated luminescence of ZnS increases, while the luminescence intensity of PS decreases, and a new green emission located around 550~nm appeared in the PL spectra of ZnS/PS composites which is ascribed to the defect-center luminescence of ZnS. The I--V characteristics of ZnS/PS heterojunctions exhibited rectifying behavior, and the forward current increases with increasing annealing temperature.  相似文献   

20.
ZnS films were prepared by pulsed laser deposition (PLD) on porous silicon (PS) substrates. This paper investigates the effect of annealing temperature on the structural, morphological, optical and electrical properties of ZnS/PS composites by x-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) and I–V characteristics. It is found that the ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction, and the intensity of diflraction peak increases with increasing annealing temperature, which is attributed to the grain growth and the enhancement of crystallinity of ZnS films. The smooth and uniform surface of the as-prepared ZnS/PS composite becomes rougher through annealing treatment, which is related to grain growth at the higher annealing temperature. With the increase of annealing temperature,the intensity of self-activated luminescence of ZnS increases, while the luminescence intensity of PS decreases, and a new green emission located around 550 nm appeared in the PL spectra of ZnS/PS composites which is ascribed to the defect-center luminescence of ZnS. The I-V characteristics of ZnS/PS heterojunctions exhibited rectifying behavior, and the forward current increases with increasing annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号