首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structures of the metallacarborane cations [(-9-Me2S-7,8-C2B9H10)Ni(-Cp)Ni(-9-Me2S-7,8-C2B9H10)]+ (2) and [Cp*Ru(Me2S-C2B9H10)RuCp*]+ (4b) were established by X-ray diffraction analysis. These results confirmed the triple-decker structure proposed for complex 2 earlier, whereas complex 4b proved to be 13-vertex dimetallacarborane rather than the triple-decker complex, as has been suggested earlier.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1879–1883, September, 2004.  相似文献   

2.
The tetraethyl- and tetramethyl-cyclobutadiene complexes [(η4-C4R4)Co(η5-C5H4CHO)] R = Et, 5, R = Me, 7, and [(η4-C4R4)Co(η5-C5H4CO2Me)] R = Et, 6, R = Me, 8, are conveniently prepared by photolysis of the corresponding isocobaltocenium cations [(η4-C4R4)Co(η6-C6H5Me)]+ in acetonitrile, and subsequent treatment with Na[C5H4CHO] or Na[C5H4CO2Me]. The aldehydes 5 and 7 undergo Wittig and Knoevenagel reactions with [FcCH2PPh3]I and CH2(CN)2, to form [(η4-C4R4)Co(η5-C5H4CH=CHFc)] and [(η4-C4R4)Co(η5-C5H4CH=C(CN)2], 11 and 15, respectively. The Horner-Wittig reaction of [(η4-C4R4)Co(η5-C5H4CH2P(O)(OEt)2] with [(η4-C4Ph4)Co(η5-C5H4CHO)] yields [(η4-C4R4)Co(η55-C5H4CHCH-C5H4)Co(η4-C4Ph4)], 12 and 13. [(η4-C4Me4)Co(η5-C5H4CHO)] also reacts with t-BuLi and FcLi to furnish the corresponding secondary alcohols, 16 and 17, respectively. Surprisingly, the attempted direct synthesis of 5 by reaction of Na[C5H5] and ethyl formate with [(η4-C4Et4)Co(CO)2I], 1, instead yielded [(η5-C5H5)Co(η4-3,4,5,6-tetraethyl-α-pyrone)], 18, and a mechanistic proposal is advanced. The X-ray crystal structures of 1, 7, 8, 11(Z), 15 and 18, and also the isocobaltocenium salts [(η4-C4Et4)Co(η6-C6H5Me)][PF6], 2, and [(η4-C4Et4)Co(η6-1,3,5-C6H3Me3)][PF6], 4, are reported.  相似文献   

3.
4.
The aldol condensation reaction between [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] and a range of aromatic aldehydes [RCHO] and [RCHCH-CHO] gives a series of α,β-unsaturated ketones [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-R}] and [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-CHCH-R}] (3). The reaction is promoted by various bases: NaH proved to be the most effective whilst nBuLi gave [Co(η4-C4Ph4){η5-C5H4C(OH)(nBu)CH3}] as the major product. NaOH was ineffective, perhaps indicating that that the methyl protons in [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] are less acidic than those in [Fe(η5-C5H5){η5-C5H4C(O)CH3}]. Compounds 3 were characterised spectroscopically. Their 1H NMR spectra are consistent with a trans configuration about their CC bond, and this was confirmed by X-ray crystallography in five cases, which showed that all have the same basic structure with parallel cyclobutadiene and cyclopentadienyl ligands, but they are not identical. The C5H4C(O)(CHCH)n-R (n = 1 or 2) moieties show little evidence for delocalisation and often deviate from planarity. The UV/Vis spectra of those 3 with smaller aromatic rings (R = C6H5, 4-C6H4NMe2, 2-C4H3S and 1-C10H7) suggest that these are donor-π-acceptor systems, but as the annellation of R increases (R = 9-C14H9, 1-C16H9 and 1-C20H11) the spectra increasingly resemble those of the parent polycyclic aromatic hydrocarbon, RH. Reduction of [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-C10H7-1}] with DIBAL gives a mixture of [Co(η4-C4Ph4){η5-C5H4C(O)CH2CH2-C10H7-1}] and [Co(η4-C4Ph4){η5-C5H4CH(OH)CHCH-C10H7-1}]. A minor product from the preparation of [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] was shown by X-ray crystallography to be the η4-butadiene complex [Co{η4-Ph(H)CC(Ph)-C(Ph)C(H)Ph}{η5-C5H4C(O)CH3}].  相似文献   

5.
A number of organometallic stilbenes of the general type [Co(η4-C4Ph4)(η5-C5H4CHCHR] are reported where R is C6H4X-4 (X = H, OMe, Br, NO2), 1-naphthyl, 9-anthryl, 1-pyrenyl, (η5-C5H4)Co(η4-C4Ph4), and (η5-C5H4)Fe(η5-C5H4Y) {Y = CHO, CHC(CN)2 and CHCHC5H45)Co(η4-C4Ph4)}. They were prepared by Wittig or Horner-Wadsworth-Emmons reactions which yield both E and Z or only E products respectively. The isomers were separated and all compounds characterised by standard spectroscopic techniques as well as by X-ray diffraction methods in many cases. The electrochemistry of the stilbene analogues in dichloromethane solution is also reported. In most, the (η5-C5H4)Co(η4-C4Ph4) functional group undergoes a reversible one-electron oxidation. For those molecules that also include (η5-C5H4)Fe(η5-C5H4Y), this is preceded by the reversible oxidation of the ferrocenyl group. Spectroscopic and structural data suggests that for most compounds there is little electronic interaction between Co(η4-C4Ph4)(η5-C5H4) and the R end groups which are effectively independent of one another. The only exceptions to this are Z and E-[Co(η4-C4Ph4)(η5-C5H4CHCHC6H4NO2-4], and [Co(η4-C4Ph4)(η5-C5H4CHCHC5H45)Fe{η5-C5H4CHC(CN)2}] where the electronic spectra are respectively consistent with a significant Co(η4-C4Ph4)(η5-C5H4)/NO2 donor/acceptor interaction and a less significant Co(η4-C4Ph4)(η5-C5H4)/C(CN)2 one. However, OTTLE studies show that in the electronic spectra of [Co(η4-C4Ph4)(η5-C5H4CHCHR]+ there are low energy absorption bands (950-1800 nm) which are attributed to R → Co(η4-C4Ph4)(η5-C5H4)+ or, when R is a ferrocenyl-base group, Co(η4-C4Ph4)(η5-C5H4) → (η5-C5H4)Fe(η5-C5H4Y)+ charge transfer transitions. The ferrocenyl compounds undergo cis/trans isomerisation on the OTTLE experiment timescale.  相似文献   

6.
The hitherto unknown indenyl-derived ylide, methyldiphenylphosphonium 1-indenylide, 1-C9H6PMePh2 (1) and its chromium(0) complex, Cr(η5-1-C9H6PMePh2)(CO)3 (2) have been synthesized and characterized spectroscopically and crystallographically. The structures and properties of 1 and 2 are compared with those of the analogous C5H4PMePh2 and its chromium complex, Cr(η5-C5H4PMePh2)(CO)3. Compound 2, obtained as a racemic mixture, exhibits planar chirality resulting from coordination of the prochiral aromatic ligand.  相似文献   

7.
The pressure dependences (dν/dP) of the main IR and Raman bands of Zeise’s complexes, K[Pt(η2-C2H4)Cl3] and [Pt(η2-C2H4)Cl2]2, have been determined for the first time for selected pressures up to ∼33 kbar with the aid of diamond-anvil cells. Neither complex undergoes a pressure-induced structural change throughout the pressure range investigated. The dν/dP values range from −0.13 to 0.79 cm−1 kbar−1. The negative values have proved particularly informative in identifying the location of the CC stretching modes of the Pt-ethylene groups, a topic of considerable disagreement in the literature.  相似文献   

8.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

9.
The reaction of the iodide complex [(η5-C9H2Me5)RhI2]2 (1) or the acetonitrile complex [(η5-C9H2Me5)Rh(MeCN)3]2+ with Tl[Tl(η-7,8-C2B9H11)] afforded rhodacarborane (η5-C9H2Me5)Rh(7,8-C2B9H11) (2). The cationic triple-decker complex with the bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H3Me2BMe)Rh(η5-C9H2Me5)]2+ (3) was synthesized by the reaction of the nitromethane solvate [(η5-C9H2Me5)Rh(MeNO2)3]2+ with the sandwich compound Cp*Fe(η-C5H3Me2BMe). The structure of 2 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1623–1625, August, 2008.  相似文献   

10.
Visible light irradiation of the benzene complex [(η-1-ButNH-1,7,9-C3B8H10)Fe(η-C6H6)]+ in the presence of the charge-compensated carborane anions [9-L-7,8-C2B9H10] (L = SMe2, NMe3) affords ferracarboranes (η-1-ButNH-1,7,9-C3B8H10)Fe(η-9-L-7,8-C2B9H10). Their structures were established by X-ray diffraction analysis.  相似文献   

11.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

12.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

13.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

14.
The monoxides [Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)] (1) and [Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)] (2) have been prepared by treatment of the corresponding diphosphines with CCl4 and methanol.These ligands react with [Pd(PhCN)2Cl2] to give dichloride complexes of different structure.The dimeric complex [{Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)}PdCl(μ-Cl)]2 (4) contains the monodentate P-coordinated osmocene ligand with the free P{O}Ph2 group, while the octamethylferrocene ligand gives the chelate k2-P,O complex [{Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)}PdCl2] (3).The structures of 3 and 4 have been determined crystallographically.Treatment of 3 and 4 with silver salts in CH2Cl2 or acetonitrile leads to the corresponding dicationic complexes[{M(η5-C5R4PPh2)(η5-C5R4P{O}Ph2)}Pd(MeCN)x]2+ (5, M = Fe, R = Me; 6, M = Os, R = H). Complex 5 decomposes upon isolation, in contrast 6 is rather stable, probably due to Os-Pd bonding. The dichlorides 3 and 4 catalyze catalytic amination of p-bromotoluene with N-(4-tolyl)morpholine with lower activity than (dppf)PdCl2, however they perform comparable to (dppf)PdCl2 activity in coupling of p-bromotoluene with p-methoxyphenyl boronic acid.  相似文献   

15.
[(η5-C5H5)ZrCl3] reacts with [C5H4CH2CH2NMe2]Li yielding the coordination polymer [(C5H5)(C5H4CH2CH2NMe2)ZrCl2]n (1) as a brown solid which is very sensitive to moisture. The reaction of 1 with 1.35 equivalent of HCl (methanolic solution) yields pale yellow green crystals of [(η5-C5H5)(η5-C5H4CH2CH2NHMe2)ZrCl2]2[ZrCl6] (2). Compound 2 was fully characterized on the basis of NMR data and X-ray crystal structure analysis. The formation of this product indicates the elimination of C5H4CH2CH2NMe2 as well as C5H5 ligands from the Zr(IV) metal centre.  相似文献   

16.
The study of the reactivity of the ferrocenyliminoalcohol [(η5-C5H5)Fe{(η5-C5H4)-CHN-(C6H4-2OH)}] (1b) with Na2[PdCl4] or Pd(OAc)2 has allowed the isolation and characterization of the heterotrimetallic complexes: trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}2Cl2] (2b), [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}] (3b) and trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2O)]}2] (4b). Ligand 1b acts as a (N) (in 2b) or a (N,O) (in 4b) ligand; while in 3b the two units of the iminoalcohol exhibit simultaneously different modes of binding {(N) and [C(sp2, ferrocene),N,O]2−}. The crystal structures of 2b · 3H2O and 3b · 1/2CHCl3 are also reported and confirm the mode of binding of the ligand in these compounds. The relative importance of the factors affecting the preferential formation of products (2b-4b) is also discussed. The study of the reactivity of 3b with PPh3 has enabled the obtention of the cyclopalladated complexes [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5- C5H5)}(PPh3)] (6b) and [Pd{[(η5-C5H3)-CHN-(C6H4-2OH)]Fe(η5-C5H5)}Cl(PPh3)] (7b), in which 1b behaves as a [C(sp2, ferrocene),N,O]2− (in 6b) or [C(sp2, ferrocene),N] (in 7b) ligand. Treatment of 3b with MeO2C-CC-CO2Me produces [Pd{[(MeO2C-CC-CO2Me)25-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}] (8b), that arises from the bis(insertion) of the alkyne into the σ[Pd-C(sp2, ferrocene)] bond. The comparison of the results obtained for 1b and [C6H5-CHN-(C6H4-2OH)] (1a) has allowed to establish the influence of the substituents on the imine carbon on their reactivity in front of palladium(II) as well as on the lability of the Pd-ligands bond. 57Fe Mössbauer studies of 2b-4b and 6b provide conclusive evidence of the effect induced by the mode of binding of 1b on the environment of the iron(II).  相似文献   

17.
Single crystal XRD is used to study the crystal structure of a new compound containing the dicarbollyl cluster anion Co(III) with the composition [CuPhen3][Co(C2B9H11)2]2·CH3CN, where Phen is 1,10-phenanthroline. The crystallographic data: C46H71B36N7Co2Cu, M = 1292.66, monoclinic system, P21/c space group, unit cell parameters a = 14.7178(2) ?, b = 19.5640(4) ?, c = 22.8663(5) ?, β = 106.6601(7)°, V = 6307.75(33) ?3, Z = 4, d x = 1.361 g/cm3, T = 100 K, μ = 0.90 mm−1. The structure is solved by the direct method and refined by the full-matrix LSM in an anisotropic-isotropic (for H atoms) approximation up to the final agreement factors R 1 = 0.0370, wR 2 = 0.0869 for 13,807 I hkl ≥ 2 σ I out of 18,295 measured I hkl . The structure consists of [CuPhen3] cations, Co(C2B9H11)2 anions, and acetonitrile molecules MeCN. The central Cu atom in the cation in the general position, and its coordination geometry is a distorted extended octahedron formed by six nitrogen atoms of the three bidentate Phen ligands. The coordination of Cu(II) in the cation is (2+2+2) with two long axial and four shorter equatorial Cu-N bonds, whose average lengths are 2.239(2) ? and 2.077(1) ? respectively. Each anion has its own position of the -C2-groups; for Co(1), it is a quasi-gauche-configuration; for Co(2), a quasi-trans-configuration.  相似文献   

18.
Friedel-Crafts cycloalkylation of fluorene with 1,4-dichlorobutane has been studied in different conditions. This reaction allows to obtain the product of exhausting fluorene alkylation, hexadecahydrotetrabenzo[a,c,d,f]fluorene - perspective η5 ligand. The simplest zirconocene has been synthesized and its structure has been confirmed by X-ray diffraction analysis. The molecule of this compound possesses skewed conformation of metallocene fragment with the phenylene moiety of fluorenyl ligand oriented towards the front side of metallocene wedge.  相似文献   

19.
The structure and dynamic behavior of complex [(η5-C5H4CH3)Cr(CO)2(μ-SBu)Pt(PPh3)2] in solution was studied by multinuclear (1H, 13C, 31P) NMR spectroscopy including a phase-sensitive NOESY experiment. Increasing temperature causes rupture of the Cr-Pt bond in the three-membered ring of the complex and rotation of the S-Pt(PPh3)2 unit around the Cr-S bond line, followed by formation of a new Cr-Pt bond to close the ring. All activation parameters for this dynamic process have been determined.  相似文献   

20.
Adsorption and dehydrogenation of ethylene on Cu(410) surface are investigated with firstprinciples calculations and micro-kinetics analysis. Ethylene dehydrogenation is found to start from the most stable π-bonded state instead of the previously proposed di-σ-bonded state. Our vibrational frequencies calculations verify the π-bonded adsorption at step sites at low coverage and low surface temperature and di-σ-bonded ethylene on C-C dimer (C2H4-CC) is proposed to be the species contributing to the vibrational peaks experimentally observed at high coverage at 193 K. The presence of C2H4-CC indicates that the dehydrogenation of ethylene on Cu(410) can proceed at temperature as low as 193 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号