首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2 kHz ultrasonic device was deployed in liquid LBE at 550 °C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance.  相似文献   

2.
A phenomenological theory of ultraviolet pulsed-laser-induced spallation is proposed to interpret crater formation in SiO2 thin films containing absorbing 18.5-nm gold particles. The theory considers a spherical thermoacoustic stress wave propagating from a thermal source produced by laser-energy absorption inside the particle and surrounding ionized volume. Calculations show that the tensile stress associated with such an acoustic wave may exceed the local strength of the material and cause fracture and spallation of the top film portion. The theory provides an explanation of the experimentally observed complex (two-cone) shape of craters formed in the film with particle-lodging depth exceeding 110 nm. Theoretical estimates for the threshold stress amplitude and peak temperature in the thermal source are in qualitative agreement with the experimental observations. PACS 61.80.Ba; 42.70.-a; 52.38.Mf  相似文献   

3.
The incubation-period-based criterion for fracture is considered in terms of the Zhurkov kinetic model of fracture. Within the kinetic model, fracture is treated as a continuously developing process, which starts immediately after the application of a tensile load to a sample and consists in breaking of the interatomic bonds and gradual accumulation of broken bonds in the material in the course of a fracture test. For certain materials, the inclusion of the thermal-fluctuation mechanism for fracture in the incubation-period-based criterion significantly affects the position of the static branch of the time dependence of strength. Time dependences of strength are calculated for a number of materials. The experimental data are analyzed using the structural-time criterion for fracture, which allows one to obtain a unified time dependence of strength for quasi-static and high-rate short-term loadings. The temperature dependence of the incubation period (latent time) is calculated analytically, and a relation is found between the latent fracture time and the thermal vibration frequency of atoms.  相似文献   

4.
We use the molecular dynamics code, large-scale atomic/molecular massively parallel simulator (LAMMPS), to simulate high strain rate triaxial deformation of crystal copper to understand void nucleation and growth (NAG) within the framework of an experimentally fitted macroscopic NAG model for polycrystals (also known as DFRACT model). It is seen that void NAG at the atomistic scales for crystal copper (Cu) has the same qualitative behaviour as the DFRACT model, albeit with a different set of parameters. The effect of material temperature on the nucleation and growth of voids is studied. As the temperature increases, there is a steady decrease in the void NAG thresholds and close to the melting point of Cu, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows disappearance of the long-range order due to the creation of stacking faults and the system no longer has a face centred cubic (fcc) structure. Molecular dynamics simulation of shock in crystal Cu at strain rates high enough to cause spallation of crystal Cu are then carried out to validate the void NAG parameters. We show that the pre-history of the material affects the void nucleation threshold of the material. We also simulate high-strain-rate triaxial deformation of crystal Cu with defects and obtain void NAG parameters. The parameters are then used in a macroscale hydrodynamic simulation to obtain spallation threshold of realistic crystal Cu. It is seen that our results match experimental results within the limit of 20% error.  相似文献   

5.
The problem of spall fracture is considered using an incubation time criterion. Some experimental fracture effects are discussed. The spall strength is found to depend substantially on the pulse parameters, in particular, the rate of decrease of the load. The strain-rate and time dependences of spall strength are shown to be considered as calculated characteristics rather than as functions of a material.  相似文献   

6.
Using an interferometric method to record the velocity of the free surface of a target subjected to two-dimensional shock loading, it is shown experimentally that the decrease in the compression pulse amplitude is due to the nonstationary nature of mesoscale processes — the amplitude decrease is progressively larger for higher rates of change of the variance of the mesoparticle velocity. It is shown theoretically that the loading rate influences the spallation strength of a material in a planar collision only if the variance of the particle velocity is nonzero. A fractal analysis of the spallation surfaces of steel samples is performed by quantitative fractography methods. An expression relating the fractal dimension of the spallation fracture surface and the variance of the mesoparticle velocity is derived. For typical values of the load pulse parameters for which back-side spallation occurs the fractal dimension agrees satisfactorily with the fractal dimensions for triadic Koch islands. Zh. Tekh. Fiz. 68, 43–49 (October 1998)  相似文献   

7.
 基于对层裂问题的理解和相关文献,就自由面速度剖面解读层裂问题的局限性提出了一些看法。指出:自由面速度剖面测量给出的层裂破坏过程是间接信息,而不是直接信息,用它确定的理论模型和数值模拟参数,也许并没有真实地反映层裂过程的物理本质;层裂强度常被人们用来表征材料在高应变率下的抗拉伸能力,但是在目前的层裂强度计算公式中没有考虑损伤介质对波剖面传播的影响,使得计算结果明显偏低;传统的单点测量得到的结果有很大的局限性,对于层裂问题,采用概率评估或者置信度评估,也许更符合真实情况。建议:为了全面真实地评价层裂问题中的物理、力学过程,应该加快发展更多的实验探测和诊断技术,尤其是对内部损伤状态的观测。  相似文献   

8.
The mechanisms of photomechanical spallation are investigated in a large-scale MD simulation of laser interaction with a molecular target performed in an irradiation regime of inertial stress confinement. The relaxation of laser-induced thermoelastic stresses is found to be responsible for the nucleation, growth, and coalescence of voids in a broad sub-surface region of the irradiated target. The depth of the region subjected to void evolution is defined by the competition between the evolving tensile stresses and thermal softening of the material due to the laser heating. The initial void volume distribution obtained in the simulation of laser spallation can be well described by a power law. A similar volume distribution is obtained in a series of simulations of uniaxial expansion of the same molecular system performed at a strain rate and temperature realized in the irradiated target. Spatial and time evolution of the laser-induced pressure predicted in the MD simulation of laser spallation is related to the results of an integration of a thermoelastic wave equation. The scope of applicability of the continuum calculations is discussed. PACS 79.20.Ds; 61.80.Az; 02.70.Ns; 83.60.Uv  相似文献   

9.
The fracture of a composite material, a spheroplastic consisting of a polyester resin matrix and glass microspheres as a filler, is studied experimentally and theoretically under static and dynamic stressing. A shock is generated by a pulsed magnetic field. The fracture type in relation to the shock parameters and material structure is analyzed. A method for testing the dynamic behavior of the material based on the incubation time accumulation is suggested.  相似文献   

10.
 采用结合双温模型的分子动力学方法详尽描述了应力约束区域内部金属薄膜后向层裂的动力学过程。与辐照表面在激光加热作用下机械稳定性受到强烈影响而发生的前向喷射不同,后向层裂是冷材料的断裂。分析了层裂机制,得出靶材是在卸载波及被反射的压力波的共同作用下发生层裂;探讨了激光诱导压力波的传播规律,预测了不同靶厚下的层裂厚度及其对层裂开始时间的影响。  相似文献   

11.
The character of the destruction of copper foil by x-rays produced by a nuclear explosion is investigated. Results on the removal of material from the front surface and on spallation fracture are obtained. The latter results are compared with those obtained under different loading conditions. Zh. Tekh. Fiz. 68, 116–117 (February 1998)  相似文献   

12.
A spallation model of strain localization is suggested according to which localization bands under pulsed loading result from unloading wave interference such that negative stresses in the extension zone are lower than the ultimate strength of the material. The temperature in the localization band is estimated to be close to the environmental temperature.  相似文献   

13.
The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.  相似文献   

14.
The experimental results on the penetration of cumulative jets into brittle materials are analyzed to substantiate the assumption that continuous hydrodynamic penetration is violated. The penetration of a cumulative jet into a brittle material has a jumplike character and consists of hydrodynamic penetration, the collapse of the cavity, and secondary penetration into the collapsed material. For a continuous supply of a cumulative jet, this process is repeated at the penetration depth. The necessary conditions of the secondary penetration consist in a high strength of the brittle material and a high fracture rate, which should provide the spallation and collapse of the cavity walls. Jumplike penetration ends when a rarefaction wave passes to the zone of primary penetration.  相似文献   

15.
A new approach to studying the dynamic strength properties of structural materials is demonstrated with fracture of 2024-T3 aircraft aluminum alloy. The central idea of this approach is the incubation time to failure. In [1], experimental data for dynamic fracture of this alloy were analyzed in terms of the classical fracture criterion, which is based on the principle of maximum critical stress intensity factor [2]. In [1], the dependence of the stress intensity factor limiting value (the dynamic fracture toughness KId, which was assumed to be a functional characteristic of the material) on the loading rate was also measured. The same experimental data were analyzed in terms of an alternative structure-time approach [3]. In this approach, the dynamic fracture toughness KId is considered as an estimable characteristic of the problem, so that determination of limiting loads does not require a priori knowledge of the loading-rate dependence of the dynamic fracture toughness. The incubation time to failure of the aircraft aluminum alloy is calculated. The difference in the loading-rate dependences of the dynamic fracture toughness, which is observed for various structural materials, is explained. The dynamic fracture toughness of the alloy under pulsed threshold loads is calculated.  相似文献   

16.
93钨合金断裂特性研究   总被引:7,自引:4,他引:3       下载免费PDF全文
 用一级压缩气体炮加载技术与锰铜压阻传感技术结合,实验研究了93钨合金的层裂特性。实时测量实验证明,断裂强度与拉抻应变速率相关,也与合金元素、材料制备工艺相关。软回收样品内部损伤的金相和扫描电镜分析表明,93钨合金的层裂是以钨晶粒破裂为主的脆性断裂,损伤度也与拉伸应变速率相关。  相似文献   

17.
I. Argatov  Yu. Petrov 《哲学杂志》2013,93(19):2485-2496
Abstract

The effect of geometrical shape of eroding absolutely rigid particles on the threshold rate of failure has been studied. The Shtaerman–Kilchevsky theory of quasi-static blunt impact, which generalizes the Hertzs classical impact theory, is used for modelling the frictionless contact interaction of an axially-symmetric particle with an elastic half-space. The incubation time fracture criterion is applied for predicting surface fracture. It is shown that there exists a critical value of the particle shape parameter such that for all its lower values, the fracture energy possesses a non-zero minimal value.  相似文献   

18.
This paper presents a study of the transient behavior of structural dynamics and the associated innovatory microscopic spallation mechanism at the solid-state interface, induced by an incident femtosecond pulse laser. By detailed structural dynamic analysis, using the technique of molecular dynamics simulation, the spallation mechanism at the solid–solid interface is observed. The occurrence of structural spallation is mainly characterized by extraordinary expansion dynamics and tensile stress that induces interior structural void defect coalescence, eventually leading to cracking. The microscopic phenomenon of moderate ductile fracturing at the solid–solid interface is identified. A high strain rate in the order of 109 s-1 is observed. Both aforementioned phenomena are analogous to the experimental results of metal-film spallation excited by a pulse laser. Moreover, it is also shown that the critical value of the stain rate is one of the dominant factors that influences the occurrence and mechanism of structural spallation. The results of simulations reveal that the thin-film structure is safe if the strain rate is below certain critical values. The critical damage threshold is evaluated and technical suggestions to avoid interfacial fracture are also presented. PACS 02.70.Ns; 42.62.-b; 64.60.Ht; 61.72.Cc; 64.60.-i  相似文献   

19.
《Physics letters. A》2019,383(23):2821-2827
Using molecular dynamics (MD) simulations, we investigate the mechanical properties of hexagonal BCN monolayer, a newly synthesized two-dimensional material with an atom ratio of B/C/N = 1:1:1. The Tersoff potential is modified to get good agreement between predicted and measured fracture strengths of graphene. With this modified Tersoff potential, we perform extensive MD simulations to study the effect of temperature, strain rate and vacancy defect on the mechanical properties of h-BCN. It is found that h-BCN is a strong material with fracture strength of 81.4–93.5 GPa, albeit ∼35% lower than that of graphene. Similar to graphene, temperature has strong effect on the mechanical properties of h-BCN. As the temperature increases from 10 K to 1300 K, the fracture strength and strain of h-BCN drops by 55% and 62%, respectively. The strain rate is found to have a moderate effect. When the strain rate increases from 0.00002 to 0.0125 ps−1, the fracture strength and strain of h-BCN increases 6.1% and 12%, respectively. As for the atomic defect, a very small concentration (0.028%) of vacancy in h-BCN is able to cause a 28% reduction in fracture strength and a 35.5% reduction in fracture strain. These findings have significance for its future applications in nanodevices.  相似文献   

20.
层错四面体是一种典型的三维空位型缺陷,广泛存在于受辐照后的面心立方金属材料中,对材料的力学性能有显著的影响.目前,关于层错四面体对辐照材料层裂行为的影响还缺乏深入系统的研究.本文使用分子动力学方法模拟了含有层错四面体的单晶铜在不同冲击速度下的层裂行为,对整个冲击过程中的自由表面速度及微结构演化等进行了深入的分析.研究发现,层错四面体在冲击波作用下会发生坍塌,并进一步诱导材料产生位错、层错等缺陷.在中低速度加载下,层错四面体坍塌引起的缺陷快速向周围扩展,为孔洞提供了更宽的形核区域,促进了孔洞的异质成核,造成材料层裂强度大幅度减小.当冲击速度较高时,层错四面体坍塌导致的局部缺陷对材料的层裂强度不再有明显影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号