首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
6, 9, 11-Trihydroxy-6a, 12a-dehydrorotenoid 1 (coccineone B) was synthesized from 2-hydroxybenzaldehyde 2 and phloroglucinol.  相似文献   

3.
12-Methyl-l, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo[2, 3-a]quinolizine (1) is synthesized through a new route developed in our laboratory. The most important step in this synthesis is the condensation of I-methyltryptophyl bromide (4) with 2-piperidone (5) to give N -(2-(1-methylidol)-3-ylethyl)-2-piperidone (6) in good yield (70%). The synthesis of 1-benzoyl-1, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo(2, 3-a]quinolizine (2) and 1-phenylcarbinol-1, 2, 3, 4, 6, 7, 12, 12b-octahydroindolo[2, 3-a]quinolizine (3) follow the method developed by Wenkert. But the yield of tetrahydropyridine 9 from partial hydrogenation of pyridinum bromide 8 with 10% palladium-charcoal is 84% which is much higher than the best yield (40%) in the literature, since the phenyl group contribute additional stability.  相似文献   

4.
5.
6.
The reaction of platinum(II) chloride with 1,2,4‐trichlorobenzene gives the novel platinum complex Pt6Cl12·(1,2,4‐C6H3Cl3). It is the first example of an cocrystallization product of platinum(II) chloride and organic molecules whose crystal structure has been established.  相似文献   

7.
Chain‐folded lamellar crystals of the ten even‐even nylons: 6 6, 8 6, 8 8, 10 6, 10 8, 10 10, 12 6, 12 8, 12 10, and 12 12 have been grown from solution and their morphologies and structures studied using transmission electron microscopy, both imaging and diffraction. Sedimented mats were examined using X‐ray diffraction. The solution‐grown crystals are lath‐shaped lamellae and diffraction from these crystals, at room temperature, reveals that three crystalline forms are present in differing ratios. The crystals are composed of chain‐folded, hydrogen‐bonded sheets, the linear hydrogen bonds within which generate a progressive shear of the chains (p‐sheets). The sheets are found to stack in two different ways. Some p‐sheets stack with a progressive shear, to form the “αp structure”; others sheets stack with an alternate stagger, to form the “βp structure”. Both the αp and βp structures give two strong diffraction signals at spacings of 0.44 nm and 0.37 nm; these signals represent a projected intrasheet interchain distance (actual value 0.48 nm) and the intersheet spacing, respectively. Preparations of nylons 6 6, 8 6, 8 8, 12 6, and 12 8 consisted almost entirely of αp‐structure material, with only a trace of βp‐structure material being present. In contrast, nylons 10 6, 10 8, 10 10, 12 10, and 12 12 contained substantial quantities of both αp‐ and βp‐structure material, with αp‐structure material always being in the majority. Preparations of nylons 10 8, 12 10, and 12 12 also showed an additional diffraction signal at 0.42 nm; this signal is characteristic of the pseudohexagonal (high temperature) structure. The melting temperature of solution‐grown lamellae of these even‐even nylons decreases with decreasing linear amide density. On heating, the strong diffraction signals (0.44 nm and 0.37 nm) gradually moved together and merge at the Brill temperature to form a single diffraction signal (0.42 nm), characteristic of the pseudohexagonal structure. This single diffraction signal remained until melting. For nylons 6 6, 8 6, 8 8, 10 6, and 12 6, the Brill temperatures were substantially below the respective melting temperatures and the single 0.42 nm diffraction signal was stable over temperature ranges of 14 °C to 56 °C, depending on the nylon. Conversely, nylons 10 8, 10 10, 12 8, 12 10, and 12 12 had coincident melting and extrapolated Brill temperatures. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1209–1221, 2000  相似文献   

8.
The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O(2) (X=CH(3)I, C(3)H(6), C(6)H(12), and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous detection of the O((3)P(J),J=2,1,0) atom photoproduct via (2+1) resonance enhanced multiphoton ionization. The kinetic energy distribution (KED) and angular anisotropy of the product O atom recoil in this dissociation are measured using the velocity map imaging technique configured for either full ("crush") or partial ("slice") detection of the three-dimensional O((3)P(J)) atom product Newton sphere. The measured KED and angular anisotropy reveal a distinct difference in the mechanism of O atom generation from an X-O(2) complex compared to a free O(2) molecule. The authors identify two one-photon excitation pathways, the relative importance of which depends on IPx, the ionization potential of the X partner. One pathway, observed for all complexes independent of IPx, involves a direct transition to the perturbed covalent state X-O(2)(A'(3)Delta(u)) with excitation localized on the O(2) subunit. The predominantly perpendicular character of this channel relative to the laser polarization detection, together with data on the structure of the complex, allows us to confirm that X partner induced admixing of an X(+)-O(2) (-) charge transfer (CT) state is the perturbing factor resulting in the well-known enhancement of photoabsorption within the Herzberg continuum of molecular oxygen. The second excitation pathway, observed for X-O(2) complexes with X=CH(3)I and C(3)H(6), involves direct excitation into the (3)(X(+)-O(2) (-)) CT state of the complex. The subsequent photodissociation of this CT state by the same laser pulse gives rise to the superoxide anion O(2) (-), which then photodissociates, providing fast (0.69 eV) O atoms with a parallel image pattern. Products from the photodissociation of singlet oxygen O(2)(b (1)Sigma(g) (+)) are also observed when the CH(3)I-O(2) complex was irradiated. Potential energy surfaces (PES) for the ground and relevant excited states of the X-O(2) complex have been constructed for CH(3)I-O(2) using the results of CASSCF calculations for the ground and CT states of the complex as well as literature data on PES of the subunits. These model potential energy surfaces allowed us to interpret all of the observed O((3)P(J)) atom production channels.  相似文献   

9.
Mass Spectra of Pd6Cl12, Pt6Cl12, and PdnPt6?nCl12 Pd6Cl12, and Pt6Cl12 and both together are volatilised in a mass spectrometer. 3 Cl and 1 Pd have approximately the same mass, therefore isotopes of Pd and Pt are used (108Pd, 194Pt). With an ionisation energy of 50 eV part of the vapourised molecules is strongly fragmented. With a lower ionisation energy the molecule ions Pd6Cl12+, Pt6Cl12+ and PdnPt6?nCl12+ are only observed.  相似文献   

10.
11.
12.
Ionization efficiencies of 14 organic compounds have been measured in the wavelength region from 105 to 134nm using an ionization chamber. The compounds examined are cyclopropane, propylene, l-butene, isobutene, cis-and trans-2-butenes, cyclohexane, 1-hexane, tetramethylethylene, ethyl alcohol, dimethyl ether, n-, and iso-propyl alcohol, and ethyl methyl ether. The ionization efficiencies of cyclopropane and cyclohexane monotonically increase with increasing photon energy, but those for the others show a peak or a shoulder in the wavelength region of the present work.  相似文献   

13.
Thermodynamic Stability of Pd6Cl12, Pd6Br12, and Pt6Cl12 Molecules Vapour pressure data of PdCl2 and PdBr2 taken from the literature have been used to get new informations regarding the vapourization of Pd6Cl12 molecules. Using mixtures of PdCl2 and AgBr as source materials, besides Pd6Cl12 molecules the vapourization of Pd6Cl12-nBrn with n = 1 – 8 has been observed in a mass spectrometer. Semi quantitative observations concerning the vapourization of Pt6Cl12 molecules from a PtCl2 solid are reported. Heats of formation and standard entropy data for the molecules Pd6Cl12, Pd6Br12 and Pt6Cl12 are given.  相似文献   

14.
15.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

16.
The synthesis of the title crown ethers starting from optically active hydrobenzoins is described. R(+)-1,in CDCl3 ,preferentially extracts R(+)-phenylglycine methyl ester hydroperchlorate from an aqueous solution of the racemate with a chiral recognition factor of 1.5 as shown by nmr measurements.  相似文献   

17.
Syntheses, Properties and Crystal Structures of the Cluster Salts Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12] Melting reactions of Bi with Pt and BiCl3 yield shiny black, air insensitive crystals of the subchlorides Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12]. Despite the substantial difference in the bismuth content the two compounds have almost the same pseudo‐cubic unit cell and follow the structural principle of a CsCl type cluster salt. Bi6[PtBi6Cl12] consists of cuboctahedral [PtBi6Cl12]2? clusters and Bi62+ polycations (a = 9.052(2) Å, α = 89.88(2)°, space group P 1, multiple twins). In the electron precise cluster anion, the Pt atom (18 electron count) centers an octahedron of Bi atoms whose edges are bridged by chlorine atoms. The Bi62+ cation, a nido cluster with 16 skeletal electrons, has the shape of a distorted octahedron with an opened edge. In Bi2/3[PtBi6Cl12] the anion charge is compensated by weakly coordinating Bi3+ cations which are distributed statistically over two crystallographic positions (a = 9.048(2) Å, α = 90.44(3)°, space group ). Bi6[PtBi6Cl12] is a semiconductor with a band gap of about 0.1 eV. The compound is diamagnetic at room temperature though a small paramagnetic contribution appears towards lower temperature.  相似文献   

18.
Monte Carlo simulated annealing strategies, carried out on four different potential energy surfaces, are applied to benzene-cyclohexane clusters, BCn, n=3-7, 12, to identify low-energy isomers and to trace the evolution of structures as a function of cluster size. Initial structures are first heated to ensure randomization, and subsequent annealing yields optimized rigid, low-energy clusters. Five major structural isomers are identified for BC3: one assumes the form of a symmetric, modified sandwich; the remaining four lack general symmetry, assuming distorted tetrahedral arrangements. For BC4 and larger clusters, the number of low-temperature isomers is large. It is, nevertheless, feasible to classify isomers into groups based on structural similarities. The evolution of BCn structures as a function of cluster size is observed to follow one of two primary paths: The first maximizes benzene-cyclohexane interactions and places benzene in or near the BCn cluster center; the competing path maximizes cyclohexane-cyclohexane interactions and distances benzene from the cluster's center of mass. Results for BC3 and BC4 are discussed with reference to experimental results and models previously applied to interpret benzene-argon cluster spectra.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号