首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   

2.
Alkaline Earth Fluoromanganates(III): BaMnF5 · H2O and SrMnF5 · H2O Solid BaF2 or SrF2 forms with solutions of Mn3+ in aqueous hydrofluoric acid precipitates of hitherto unknown BaMnF5 · H2 and SrMnF5 · H2O respectively. X-ray structure determination on single crystals of both isotypic compounds (space group P21/m, Z = 2; BaMnF5 · H2O: a = 537.0(3), b = 817.2(2), c = 628.0(4) pm β = 111.17(5)°, Rw = 0.035 for 1403 reflections; SrMnF5 · H2O: a = 510.8(1), b = 792.0(2), c = 610.6(1) pm, β = 110.24(1)° Rw = 0.068 for 539 reflections) reveal pure [MnF6]3? octahedra connected with each other to infinite chains by sharing trans corners. The H2O molecules are coordinated to the alkaline earth ions only and form weak O? H…F hydrogen bonds. The pronounced weakening of the Mn? F bonds within the chain direction (Mn? F 2X 212.7(1)/210.8(5) pm, 2X 183.8(3)/181.8(9) pm, 2X 186.9(2)/187.2(8) pm) may be due by halves to the Jahn-Teller-effect as can be deduced by bond valence calculations.  相似文献   

3.
Hydrogen Bonds in o- and m-Phenylenediammonium Aquapentafluoro Metallates(III) (MIII = Al, Cr, Fe) m- and o-Phenylenediammonium-[MIIIF5(H2O)] compounds of Al, Cr and Fe were synthesized and characterized by X-ray single crystal structure analysis. All structures are described in the space group P212121 (Z = 4). m-Ph(NH3)22+ (Ph(NH3)22+ = phenylenediammonium) compounds: Al : a = 6.489(2), b = 7.943(2), c = 18.204(2) Å, R/wR = 0.084/0.050 for 1 533 reflections; Cr : a = 6.571(2), b = 8.006(2), c = 18.456(3) Å, R/wR = 0.050/0.040 for 1 571 reflections; Fe : a = 6.608(2), b = 8.052(2), c = 18.424(4) Å, R/wR = 0.042/0.034 for 1 947 reflections. o-Ph(NH3)22+ compounds: Al : a = 6.580(2), b = 7.891(2), c = 18.319(5) Å, R/wR = 0.050/0.045 for 2 370 reflections; Cr : a = 6.642(2), b = 7.954(2), c = 18.484(4) Å, R/wR = 0.065/0.043 for 2 041 reflections; Fe : a = 6.693(2), b = 7.995(4), c = 18.529(7) Å, R/wR = 0.035/0.033 for 2 651 reflections. Isolated distorted octahedral [MIIIF5(H2O)]2? anions are connected by double O? H ?F hydrogen bonds of alternating strength to form chains in the b direction. Those chains, packed in a pseudohexagonal way, are further linked by the ammonium functions of the phenylenediammonium cations to a 3 D hydrogen bond network.  相似文献   

4.
NH4[Re3Cl10(OH2)2] · 2 H2O: Synthesis and Structure. An Example for “Strong” N? H …? O and O? H …? Cl Hydrogen Bonding The red NH4[Re3Cl10(OH2)2] · 2 H2O crystallizes from hydrochloric-acid solutions of ReCl3 with NH4Cl. It is tetragonal, P41212, No. 92, a = 1157.6, c = 1614.5 pm, Z = 4. The crystal structure contains “isolated” clusters [Re3Cl10(OH2)2]?. These contain Cl…?H? O? H…?Cl units with “very strong” hydrogen bonds: distances Cl? O are only 286 pm. NH4+ has seven Cl? as nearest neighbours and, additionally, one H2O which belongs to a cluster [d(N? O1) = 271 pm] and one crystal water [d(N? O2) = 286 pm].  相似文献   

5.
Polysulfonyl Amines. LVII. Two Silver(I) Di(organosulfonyl)-amides with Silver-η2-Aryl or Silver-Silver Interactions: Crystal Structures of Silver Di(benzenesulfonyl)amide-Water (1/0.5) and of Anhydrous Silver Di(4-toluenesulfonyl)-amide Crystals of [(PhSO2)2NAg(μ-H2O)AgN(SO2Ph)2]n ( 5 ) and [(4-Me? C6H4SO2)2NAgAgN(SO2C6H4-4-Me)2]n ( 6 ) were obtained from aqueous solutions. The crystallographic data are for 5 (at ?95°C): monoclinic, space group C2/c, a = 2 743.8(5), b = 600.49(12), c = 1 664.5(3) pm, β = 101.143(15)°, V = 2.6908 nm3, Z = 8, Dx = 2.040 Mg m?3; for 6 (at ?130°C): monoclinic, space group P21/n, a = 1 099.8(5), b = 563.7(3), c = 2 487.7(13) pm, β = 99.68(4)°, V = 1.5203 nm3, Z = 4, Dx = 1.888 Mg m?3. In both crystals, the silver atom has a fivefold coordination. The structure of 5 displays [(RSO2)2N? Ag(μ-H2O)Ag′? N(SO2R)2] units with Ag? N 226.9 pm, Ag? O 236.7 pm and Ag? O? Ag′ 95.3°; the water oxygen lies on a crystallographic twofold axis. These units are extended to two fused six-membered rings by intramolecular dative bonds (S)O → Ag′ and S(O)′ → Ag (249.3 pm). One phenyl group from each (PhSO2)2N moiety is η2-coordinated with its p-C and one m-C atom to a silver atom of a neighbouring bicyclic unit related by a glide plane to form infinite parallel strands (p-C? Ag 252.2, m-C? Ag 263.9 pm). The strands are interconnected into parallel layers through hydrogen bonds between H2O and sulfonyl oxygens [O …? O(S) 276.1 pm]. These layers consist of a hydrophilic inner region containing metal ions, N(SO2)2 fragments and water molecules, and hydrophobic surfaces formed by phenyl groups. The structure of 6 features centrosymmetric [(RSO2)2N? Ag? Ag′? N(SO2R)2] units with two intramolecular dative bonds (S)O → Ag′ and (S)O′ → Ag (Ag? Ag′ 295.4, Ag? N 226.0, Ag? O 229.4 pm). These bi-pentacyclic units are associated by translation parallel to y into infinite strands by two dative (S)O → Ag bonds per silver atom (Ag? O 243.2 and 253.3 pm).  相似文献   

6.
Unusual H-Bonds in Sodium Hydroxide Monohydrate: X-Ray and Neutron Diffraction on NaOH · H2O and NaOD · D2O, respectively X-ray data revealed the structure of NaOH · H2O including the H positions. Neutron diffraction on microcrystalline NaOD · D2O was used for comparison of H with D positions: The compound crystallizes in a layer-type structure with the sequence …? /O Na O O Na O/ …? closely related to that of hydrargillite Al(OH)3 with …? /O 2/3 Al O O 2/3 Al O/ …?. Between OH? ions as acceptors and H2O molecules mäandric, one-dimensional infinite strong H-bonds occur with d(O…?O) = 2.66 Å and 2.69 Å. These lie within O-layers that coordinate Na+ ions. Bridge-bonds between OH? ions as donors and H2O molecules as acceptors connect the /O Na O/-layers with d(O…?O) = 3.18 Å.  相似文献   

7.
Hydrolysis and Halide Exchange of Pentahalogenomonocarbonyl Osmates(III) The aquo complexes [OsX4(CO)(H2O)]?, [OsX3(CO)(H2O)] and [OsX2(CO)(H2O)3]+, X ? Cl, Br, I, produced by the stepwise hydrolysis of [OsX5(CO)]2?, are isolated as pure solutions by ionophoresis and characterized by their absorption spectra. Due to stability of the monaquo complexes and the different trans-effect of the halides it is possible to prepare the mixed complexes [OsX4–nYn(CO)(H2O)]?, X ≠ Y = Cl, Br, I, n = 1–3, and for n = 2 the pure stereoisomers are formed. A systematic shift is found in charge-transfer bands to the shorter wavelengths when the halides are replaced by H2O, I by Br or Cl and Br by Cl.  相似文献   

8.
Dimeric Low-Spin Iron(III) Phthalocyanines: Synthesis and Properties of Ferromagnetically Coupled μ-Oxodi(acidophthalocyaninatoferrates(III)) μ-Oxodi(phthalocyaninatoiron(III)) ([(FePc2?)2O]) dissolved in pyridine reacts with different Tetra(n-butyl)ammonium salts yielding partly solvated Di(tetra(n-butyl)ammonium)-μ-oxodi(acidophthalocyaninatoferrates(III)) ((nBu4N)2[(Fe(X)Pc2?)2O]; X? = CN?, Im?, NCO?, NCS?, NO2?). The uv-vis. spectra show the typical B, Q, N and L regions of the Pc2? ligand scarcely influenced by the axial ligands X. In comparison with [(FePc2?)2O] mainly the B region is hypsochromically shifted due to strong excitonic coupling (> 3 kK). Two regions of weak absorbance at ca. 7.6–8.7 and 11.4–13.0 kK are assigned to trip-doublet transitions. The m.i.r. and resonance Raman spectra are dominated by the fundamental vibrations of the Pc2? ligand being characteristic for hexa-coordinated low-spin FeIII phthalocyanines. Internal vibrations of the ambident axial ligands X are in accordance with the proposed Fe? X bond. The i.r. active asym. (Fe? O? Fe) stretching vibration is observed in the region 631–690 cm?1. Fe? X stretching vibrations are only present in the f.i.r. spectra. The magnetic properties and Mößbauer spectra are interpreted in terms of an electronic model which assumes that a S′ = 1 ground state arises from strong ferromagnetic coupling of the low-spin FeIII centres. Both spin-Hamiltonian and ligand-field models have been employed to fit the variable temperature susceptibility data. These low-spin μ-oxo FeIII dimers are rare compared to the many known examples of coupled high-spin species including the parent, [(FePc2?)2O].  相似文献   

9.
The magnetism of μ-oxo-bis[(5,15-dimethyl-2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III)] with bridge geometry d(Fe? O) = 1.752 Å and ?(Fe? O? Fe) = 178.6° can be explained in terms of antiferromagnetically exchange coupled iron(III)-3d5 pairs. The magnetochemical analysis in the temperature range 6K–295K on the basis of the isotropic Heisenberg model (spin Hamiltonian: ? = ?2J?1 · ?2 S1 = S2 = 5/2) leads to the exchange parameter J = ?125 cm?1. With regard to the Fe? O bond length the J value corresponds to the series of data observed for other μ-oxodiiron-porphyrins and -porphycenes. Compared to the spin-spin coupling in [Fe2Cl6O]2?, |J| is enhanced by ≈ 10%.  相似文献   

10.
The novel μ‐oxo‐diiron complex [Fe2O(BPHPA)2](ClO4)4 [BPHPA is (6‐hydroxy­methyl‐2‐pyridyl­methyl)­bis(2‐pyridyl­methyl)­amine, C19H20N4O], contains a binuclear centrosymmetric [Fe2O(BPHPA)2]4+ cation (the bridging O atom lies on an inversion centre) and four perchlorate anions. Each iron ion is coordinated by four N atoms [Fe—N = 2.117 (5)–2.196 (5) Å] and one O atom [Fe—O = 2.052 (5) Å] from a BPHPA ligand, and by one bridging oxo atom [Fe—O = 1.7896 (9) Å], forming a distorted octahedron. There are hydrogen bonds between the hydroxy group and perchlorate O atoms [O—H·O = 2.654 (7) Å].  相似文献   

11.
The products obtained by mixing aqueous solutions of cobalt (II) chloride and potassium or hydrogen cyanide are nonstoichiometric compounds Co(CN)x, yH2O whith x between 2.2 and 2.4 and y between 1.75 and 2.15. They have a cubic face-centered unit cell with a = 10.20 ± 0.02 Å and Z between 6.8 and 7.1 (Z = number of units Co (CN)x yH2O per cell). Infrared spectra show that there is zeolitic as well as coordinated water present. The coordination units derived from reflectance spectra in the ultraviolet and visible region are (CoIII)C6 and CoIIN6-xOx. There exists a close structural relationship between Co(CN)x, yH2O and the stoichiometric compound Co3[Co(CN)6]2, zH2O. Comparison of calculated with experimental density shows that there must be holes in the threedimensional Co? C? N? Co-framework, which can be occupied by water molecules.  相似文献   

12.
The structural, electronic, and magnetic properties of the stoichiometric (001) surface of double perovskite Sr2FeMoO6 have been studied by using a 10‐layer FeMoO4 and SrO terminated (001)‐oriented slab model and the first‐principles projector augmented wave potential within the generalized gradient approximation as well as taking into account the on‐site Coulomb repulsive (U = 2.0 eV for Fe and 1.0 eV for Mo). An outwards relaxation is observed for several layers near surface, and the accompanying layer rumpling has a decrease tend from surface layer to inner layer. Along Fe–O–Mo–O–Fe or Mo–O–Fe–O–Mo chains, the oxygen atom is closer to the adjacent Mo atom than to the adjacent Fe atom. In FeO6 or MoO6 octahedra, the two axial TM?O bonds are not equal, and especially, the surface dangling bond makes the remaining one axial TM?O bond slightly shorter than four equally equatorial TM?O bonds. The half‐metallic nature and a complete (100%) spin polarization character ensure the FeMoO4 and SrO terminated (001)‐oriented slab of double perovskite Sr2FeMoO6 a potential application in spintronics devices. The Fe+3 and Mo+5 ions are still in the (3d5, S = 5/2) and (4d1, S = 1/2) states with positive and negative magnetic moments respectively and thus antiferromagnetic coupling via oxygen between them. There is no direct interaction between two nearest Fe–Fe or Mo–Mo pairs, whereas the hybridizations between Fe 3d and 4s, O 2s and 2p, as well as Mo 4d, 5s and 5p orbitals are fairly significant. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Studies on Sodium Trifluormethanesulfonate – Crystal Structure and Phase Transition of Sodium Trifluormethanesulfonate Monohydrate and Sodium Ion Conductivity of Anhydrous Sodium Trifluormethanesulfonate According to the results of temperature dependent powder diffractometry (Guinier-Simon-technique) sodium trifluormethanesulfonate monohydrate is dimorphous. The phase transition occurs at ?35°C. The room-temperature modification crystallizes monoclinic in space group P21/c with the lattice parameters a = 941.6(5) pm, b = 654.3(2) pm, c = 1062.4(5) pm and β = 107.73(2)°. The crystal structure consists of double layers of trifluormethanesulfonate anions, the lipophilic CF3-groups pointing at each other. Sodium is coordinated by four oxygen atoms from four different anions and by two molecules of crystal water. The resulting polyhedron may be addressed as a distorted octahedron. The low-temperature modification crystallizes orthorhombic in space group Pnma with the lattice parameters a = 645.31(9) pm, b = 538.03(9) pm, c = 1745.3(3) pm. The loss of crystal water occurs at 136°C. Anhydrous sodium trifluormethanesulfonate shows a phase transition at 252°C. The high-temperature modification is a good sodium ionic conductor (σ = 4.1 · 10?1 Ω?1 cm?1 at 250°C).  相似文献   

14.
Novel Bis(dimethinemerocyanine) Dyes with Isolated Chromophores in the Molecule Containing the Sulfobutyl Group and their Aggregation Tendency in Aqueous Solution The bis(dimethinemerocyanine) dyes 7a – c with Chromophores separated by a polymethylene chain as ‘isolator’ are synthesized in good yield. Their aggregation tendency in organic solvents, organic solvents/H2O mixtures, and in H2O is investigated. In organic solvents, the dyes 7a – b show a splitted absorption band, due to interaction of the two Chromophores of the dye. In H2O, 7a exhibits an intense absorption band at 496 nm (? = 224 300 1·mol?1·cm?1) with a small width $ (\tilde v_{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} = 1000\;{\rm cm}^{ - 1}) $ and shoulders at 552 and 580 nm. In presence of starch, this absorption band shifts to 617 nm, probably due to J-aggregation. The dye 7b shows the same spectral behaviour as 7a . In contrast, 7c exhibits an absorption band without splitting in organic solvents; the interaction of the Chromophores has disappeared. In H2O and in H2O containing starch, 7c shows a wide absorption band, due to interaction of the Chromophores of the dye.  相似文献   

15.
In the title compound, C6H14N4O2·H2O, the α‐amino group is neutral. The molecular side chain including the guanidinium group is not fully extended, having a near gauchegauche conformation [χ3 = 59.0 (1)°; χ4 = 72.8 (1)°]. The network of hydrogen bonds stabilizing the crystal lattice includes those formed between the deprotonated and negatively charged α‐carboxyl­ate groups and the positively charged amino groups of the guanidinium group of neighbouring mol­ecules. N—H?O=C and water‐mediated N—H?O hydrogen bonds link individual mol­ecules to produce pairs of spiral motifs laterally connected by N—H?O and C—H?O hydrogen bonds.  相似文献   

16.
We report the synthesis, crystal structures, and spectral, thermal, and magnetic properties of a family of metal–organic perovskite ABX3, [C(NH2)3][MII(HCOO)3], in which A=C(NH2)3 is guanidinium, B=M is a divalent metal ion (Mn, Fe, Co, Ni, Cu, or Zn), and X is the formate HCOO?. The compounds could be synthesized by either diffusion or hydrothermal methods from water or water‐rich solutions depending on the metal. The five members (Mn, Fe, Co, Ni, and Zn) are isostructural and crystallize in the orthorhombic space group Pnna, while the Cu member in Pna21. In the perovskite structures, the octahedrally coordinated metal ions are connected by the antianti formate bridges, thus forming the anionic NaCl‐type [M(HCOO)3]? frameworks, with the guanidinium in the nearly cubic cavities of the frameworks. The Jahn–Teller effect of Cu2+ results in a distorted anionic Cu–formate framework that can be regarded as Cu–formate chains through short basal Cu? O bonds linked by the long axial Cu? O bonds. These materials show higher thermal stability than other metal–organic perovskite series of [AmineH][M(HCOO)3] templated by the organic monoammonium cations (AmineH+) as a result of the stronger hydrogen bonding between guanidinium and the formate of the framework. A magnetic study revealed that the five magnetic members (except Zn) display spin‐canted antiferromagnetism, with a Néel temperature of 8.8 (Mn), 10.0 (Fe), 14.2 (Co), 34.2 (Ni), and 4.6 K (Cu). In addition to the general spin‐canted antiferromagnetism, the Fe compound shows two isothermal transformations (a spin‐flop and a spin‐flip to the paramagnetic phase) within 50 kOe. The Co member possesses quite a large canting angle. The Cu member is a magnetic system with low dimensional character and shows slow magnetic relaxation that probably results from the domain dynamics.  相似文献   

17.
Hydrates of Weak and Strong Bases. XI. The Crystal Structures of NaOH · 3,5H2O and NaOH · 7 H2O. A Refinement The crystal structures of the hydrates NaOH · 3,5 H2O (space group P21/c, Z = 8 formula units per unit cell; lattice parameters: a = 6.481, b = 12.460, c = 11.681 Å, β = 104.12° at ?100°C) and NaOH · 7 H2O (P21/c, Z = 4; a = 7.344, b = 16.356, c = 6.897 Å, β = 92.91° at ?150°C) have been redetermined using MoKα diffractometer data. The obtained refinement of the structures, including the localization also of the H atoms for the first time, has led to new findings with respect to the H bonds. In particular, in both hydrates there is one such interaction of the rare type OH? …? OH2, from an OH? ion to an H2O molecule, i. e. with the OH? ion as the proton donor.  相似文献   

18.
Investigation into Sulfides and Selenides of Primary Phosphines — The (1-Hydroxyalkyl)-organyl-phosphine Sulfides and Selenides, New Classes of Compounds Primary phosphines react with S8 and Se8, respectively, forming organylphosphine monosulfides, and monoselenides, respectively, RP(X)H2 (X = S, Se) which are well characterized by 31P NMR spectroscopy. Organylphosphine monosulfides are detected in the reaction mixture of primary phosphines with 2,4-diaryl-1,3,2,4-dithiadiphosphetane-2,4-disulfides, too. The reaction of primary phosphines with sulfur or selenium proceeds in presence of most of the ketones without formation of any side product. The (1-hydroxyalkyl)-organyl-phosphine sulfides and selenides, respectively, RP(X)(H)C(OH)R1R2, are yielded generally in crystalline form. The X-ray crystal structure analysis of the (1-hydroxy-1-methyl-ethyl)-phenyl-phosphane sulfide (R = Ph, R1 = R2 = Me) has shown that in the crystal the molecules are chained via intermolecular O? H …? S hydrogen bridging bonds (O …? S = 328 pm). Aldehydes react with primary phosphines and sulfur forming bis(1-hydroxyalkyl)-phenyl-phosphine sulfides, RP(S)[CH(OH)R1]2. 1H, 13C, and 31P NMR spectroscopic investigations allow to detect and to identify stereoisomers in some cases. Quantumchemical calculations reflect correctly which of the carbonyl compounds are able to react with the organylphosphine monosulfide formed as intermediate.  相似文献   

19.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Aminocarbonylthioformates — Preparation and Reactivity Sodium aminocarbonylthioformate NaSCOCONH2 (II) is obtained by reaction of sodium cyanodithioformate with acetone in presence of a secondary amine and water. II permits to produce the acid HSCOCONH2 · H2O (IX) and salts MII(SCOCONH2)2 · 2H2O. In basic aqueous solutions hydrolysis of II to oxaminate and oxalate, respectively, takes place, an excess of aqueous ammonia leads to amidino formic acid. In organic solvents the reaction of IX with N-bases yields stable ammonium salts. The results of i.r. spectroscopic and thermogravimetric measurements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号