首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Synthesis and Structure of (Ph3PAu)3Mn(CO)4 Photolysis of (Ph3PAu)Mn(CO)5, Ph3PAuN3 and Ph3PAuNCO yields (Ph3PAu)3Mn(CO)4 ( 1 ). 1 crystallizes in the monoclinic space group P21/n with a = 1 031.3(1); b = 3 095.2(3), c = 3 386.3(3) pm; β = 97.58(3)°; Z = 8. The crystal structure contains two symmetry independent clusters 1 of the same geometry. Their inner core MnAu3 forms a rhombus with distances Mn? Au of about the same lengths between 258.4(4) and 262.0(4) pm. The distances Au? Au range from 276.6(2) to 281.3(2) pm. The bonding in 1 is discussed and compared with those of (Ph3PAu)3Co(CO)3 having the same total number of electrons but a tetrahedral framework.  相似文献   

2.
Cluster Synthesis by Photolysis of Azido Complexes of Platinum and Gold. Syntheses and Crystal Structures of [(Ph3PAu)6(AuCl)3Pt(CO)], [(dppe)PtCo2(CO)7] and [(Ph3PAu)4Pt(dppe)](PF6)2 Photolysis of a mixture of Ph3PAuN3, Ph3PAuCl and (Ph3P)2Pt(N3)2 in THF yields after chromatographic separation with CH2Cl2/EtOH as eluens the cluster [(Ph3PAu)6(AuCl)3Pt(CO)] ( 1 ). It crystallizes in the triclinic space group P1 with the lattice parameters a = 2 139.3(4), b = 2 457.1(4), c = 2 561.9(1) pm, α = 79.74(9)°, β = 80.06(6)°, γ = 66.05(5)°, Z = 4. The nine gold atoms form a fragment of an icosahedron with the platinum atom in its center. Upon photolysis of (dppe)Pt(N3)2 with Co2(CO)8 in THF one m?2-CO ligand of the cobalt carbonyl is substituted by a (dppe)Pt group. The resulting cluster [(dppe)PtCo2(CO)7] ( 2 ) crystallizes monoclinically in the space group P21/n with a = 1 303.9(3), b = 1 768.1(8), c = 1 461.4(4) pm, β = 102.81(1)°, Z = 4. Photolysis of 2 with excess Ph3PAuN3 affords the clusters [(Ph3PAu)4Pt(dppe)]2+ ( 3 ), and [(Ph3PAu)6AuCo2(CO)6]+. 3 crystallizes with PF as counterions in the triclinic space group P1 with a = 1 369.1(4), b = 1 505.0(4), c = 2 773.0(8) pm, α = 84.74(1)°, β = 87.37(2)°, γ = 65.94(2)°, Z = 2. The Au4Pt skeleton of 3 forms a trigonal bipyramid with the platinum atom in equatorial position.  相似文献   

3.
Synthesis and Structure of [(Ph3PAu)6Co(CO)2](PF6) and [(Ph3PAu)7Co(CO)2](PF6)2 By the reaction of (Ph3PAu)4Co[(CO)3]+ with OH? in the presence of excess Ph3PAuCl the larger cluster cations [(Ph3PAu)6Co(CO)2]+ ( 1 ) and [(Ph3PAu)7Co(CO)2]2+ ( 2 ) can be built up with 1 being the main product. 1 crystallizes with PF?6 as counterion in the monoclinic space group C2/c with a = 3008.3(6); b = 1339.1(2); c = 2909.4(6) pm; β = 103.08(1)°; Z = 4. The inner core of the cluster cation 1 with the symmetry C2 has the form of a bicapped trigonal bipyramid with the heteroatom in equatorial position, and distances Au? Au between 280.4(1) and 288.4(1) pm and Co? Au between 254.9(1) and 257.1(2) pm. 2 · (PF6)2 crystallizes in the triclinic space group P1 with a = 2155.7(1); b = 1720.6(1); c = 3543.6(1) pm; α = 91.89(1)°; β = 97.51(1); γ = 89.92(1)°; Z = 4. The unit cell contains two symmetry independent cluster cations 2 of about the same geometry. The cluster skeleton Au7Co can be described as fragment of an icosahedron formed by seven gold atoms with the Co atom in its center. The Au? Au distances range from 274.8(3) to 332.6(3) pm, and the Co? Au distances are 256.8(6) to 264.7(5) pm. The bonding in 1 and 2 is discussed.  相似文献   

4.
Photolysis of R3PAuN3 in the presence of Mn2(CO)10 yields the cationic cluster compounds [(Ph3PAu)4Mn(CO)4]+ (1) and [(Ph3PAu)6Mn(CO)3]+ (2), which can be separated by column chromatography. Compound 1 crystallizes from CH2Cl2-diisopropylether after addition of PF6 as 1 · PF6· 0.5CH2Cl2 in the triclinic space group P1̄ with a = 1709.8(6) pm, b = 2017.3(7) pm, c = 1180.3(7) pm, α = 106.42(3)°, β = 98.81(4)°, γ = 102.82(4)°, V = 3704.9 × 106 pm3, Z = 2. The central unit of 1 is a trigonal bipyramid Au4Mn with the manganese atom in equatorial position. The AuAu distances are in the range 277.3 to 292.2 pm. The manganese atom forms two short bonds of 263.3 and 264.0 pm to the axial gold atoms and two longer bonds of 272.3 and 273.3 pm to the equatorial neighbors. A d2sp3 hybridization can be assumed for the manganese atom. Four of the orbitals are used for the MnCO σ-bonds. The remaining two are then pointing approximately to the center of the Au3 triangular faces.  相似文献   

5.
Synthesis and Crystal Structure of [(Ph3PAu)3NPPh3][PF6]2, a Gold(I) Phosphoraneiminato Complex The photolytic reaction of Ph3PAuN3 with Cr(CO)6 in THF yields the phosphoraneiminato complex [(Ph3PAu)3NPPh3]2+ in low yield as well as the cluster cation [(Ph3PAu)8]2+ as the main product. The phosphoraneiminato complex crystallizes from CH2Cl2 with [PF6]? ions as [(Ph3PAu)3NPPh3][PF6]2·CH2Cl2 in the triclinic space group with a = 1200.8(1), b = 1495.6(2), 2053.5(5), α = 86.97(2)°, β = 82.79(1)°, γ = 81.87(2)°, and Z = 2. The phosphoraneiminato ligand bridges through its N atom three Au atoms, which itself are connected to each other by weak aurophilic interactions.  相似文献   

6.
Synthesis and Crystal Structure of (C5H5)Mo(CO)3(AuPPh3) and [(C5H5)Mo(CO)2(AuPPh3)4]PF6 CpMo(CO)3(AuPPh3) is obtained by the reaction of Li[CpMo(CO)3] with Ph3PAuCl at ?95°C in CH2Cl2. It crystallizes in the monoclinic space group C2/c with a = 2625.1(7), b = 883.2(1), c = 2328.4(7) pm, β = 116.39(1)° und Z = 8. In the complex the AuPPh3 group is coordinated to the CpMo(CO)3 fragment with a Au? Mo bond of 271,0 pm. The Mo atom thus achieves a square pyramidal coordination with the center of the Cp ring in apical position. CpMo(CO)3(AuPPh3) reacts under uv irradiation with an excess of Ph3PAuN3 to afford the cluster cation [CpMo(CO)2(AuPPh3)4]+. It crystallizes as [CpMo(CO)2(AuPPh3)4]PF6 · 2 CH2Cl2 in the orthorhombic space group P212121 with a = 1553.9(1), b = 1793.8(2), c = 2809.8(7) pm und Z = 4. The five metal atoms form a trigonal bipyramidal cluster skeleton with the Mo atom in equatorial position. The Mo? Au distances range from 275.5 to 280.8 pm, and the Au? Au distances are between 281.2 and 285.6 pm.  相似文献   

7.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

8.
Syntheses and Crystal Structures of [(Ph3As)2CCN–MnBr3], [(Ph3As)2CCN–CoBr3], and [(Ph3As)2CCN]+CuBr2 The di(arsa)acetonitrilium bromide [(Ph3As)2CCN]Br reacts with the anhydrous dibromides of manganese and cobalt in acetonitrile to form the molecular complexes [(Ph3As)2CCN–MBr3] [M = ( 1 ), Co( 2 )] with zwitterionic structures. With copper(I)bromide, however, the ionic compound [(Ph3As)2CCN]+CuBr2 ( 3 ) is formed. All complexes are characterized by IR spectroscopy and by crystal structure analyses. 1 and 2 crystallize isotypically with each other in the space group P 1 with two formula units per unit cell. The MBr3 fragments in the molecular complexes are connected to the N atom of the [(Ph3As)2CCN]+ cation showing bond angles C–N–Mn of 156.9° and C–N–Co of 161°, and distances Mn–N of 215.6 pm and Co–N of 201 pm. In 3 , on the other hand, (space group C2/c, Z = 4) the ions [(Ph3As)2CCN]+ and the linear Br–Cu–Br ion are to be found concurrent but separate.  相似文献   

9.
Synthesis and Structure of K[Au(AuCl)(AuPPh3)8)](PF6)2 Photolysis of a mixture of Ph3PAuCl and Ph3PAuN3 (1 : 3) in toluene/THF yields in the presence of Na2[(C5H5)V(CO)3] the new cluster cation [Au(AuCl)(AuPPh3)8]+. It crystallizes from CH2Cl2 after addition of KPF6 as K[Au(AuCl)(AuPPh3)8](PF6)2 · 4 CH2Cl2. The compound forms a tetragonal structure with the space group P4/n and a = 2552.6(3), c = 1401.1(1) pm, Z = 2. The cluster cations with a spheroidal topology are built up of a centered Au8 crown whose central gold atom in addition binds a AuCl group. The cluster occupies with its center and AuCl group a fourfold axis of the space group. The radial bonds between the central and the peripheral Au atoms are in the range of 263.7 to 268.4 pm, while the distances between the peripheral atoms are longer with 291.7 to 350.9 pm.  相似文献   

10.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

11.
Organometallic Lewis Acids. L. Addition of Pentacarbonylrhenium and Triphenylphosphinegold Cations to Anionic Dithiolato Metal Complexes as S-Nucleophiles The organometallic Lewis Acids Ph3PAuNO3 ( 1 ) and (CO)5ReFBF3 ( 2 ) react with the dithiolato metal complexes (Bu4N)2[M(mnt)2] (mnt = m aleo n itrildi t hiolato, M = Ni, Cu, Pt, Zn) and (Bu4N)2[Zn(dmit)2] (dmit = d i m ercapto i sotri t hiono) to give the complexes (Ph3PAu)2mnt ( 3 ), (Bu4N)[Ph3PAu(mnt)] ( 4 ), (Ph3PAu)2Pt(mnt)2 ( 5 ), (Ph3PAu)2dmit ( 10 ) and [(CO)5Re]2Ni(mnt)2 ( 6 ), (Bu4N){[(CO)5Re]M(mnt)2} (M = Ni, Pt, 7, 8 ), [(CO)5Re]2(mnt)2 ( 9 ) and [(CO)5Re]2Ni(dmit)2 ( 11 ), respectively. The compounds 3, 4 and 5 have been characterized by x-ray structural analysis. In 4 the chelate ligand is symmetrically coordinated to the AuI atom. Weak Au? Au (dAu? Au = 309 pm) interactions lead to the formation of chains in the crystal of 3 . The trans-anti configuration in 5 can also be assumed for the complexes 6 and 11 for sterical reasons. Compound 1 reacts with K2[M(dto)2] (dto = d i t hio o xalato, M = Pd, Pt) to give the expected bis(triphenylphosphinegold) adducts 12 and 13 . Complex 2 , however, affords with dithiooxalato metal dianions the compound [(CO)5Re]2(dto)2 ( 14 ) as final product. (Ph3PAu)2dto ( 15 ) is obtained by reaction of 1 with K2dto. [(CO)5Re]2FeNO(dto)2 ( 16 ) can be isolated as an unstable adduct from the reaction of 2 with [Fe(NO)(dto)2]2? Re(CO)5+ and Ph3PAu+ can be added to the bridging S atoms of [(ON)2Fe(μ-S)2Fe(NO)2]2? to give 17 and 18  相似文献   

12.
Synthesis and Coordination Behaviour of (Ph3SnO)3As. The Crystal Structures of (Ph3SnO)3As and [{(Ph3SnO)3As}Fe(CO)4] (Ph3SnO)3As ( 1 ) was obtained from the reaction of Ph3SnOH with As2O3 in a dichloromethane/water mixture as solvent. Upon recrystallization from DMF 1 forms orthorhombic crystals, space group P212121, with a = 977.3(2), b = 1903.5(3) and c = 2600.9(5) pm (at 220 K). In 1 the As atom is bound to three OSnPh3 groups with As–O distances of 171.9(3)–174.9(3) pm. Reaction of 1 with Fe2(CO)9 gives [{(Ph3SnO)3As}Fe(CO)4] ( 2 ). 2 crystallizes monoclinic, space group P21/n with a = 2242.3(5), b = 1112.6(2), c = 2353.0(5) pm and β = 111,46(2)° (at 220 K). In 2 the iron atom exhibits a trigonal bipyramidal coordination with the (Ph3SnO)3As ligand in an axial position. The Fe–As bond length is 230.5(1) pm.  相似文献   

13.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P ? P-P[Cr(CO)5]2(SiMe3)} Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42? (R ? SiMe3, R′ ? Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1 -Ci. The distances d(P? P) = 202.5(1)pm and d(P? P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr? P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion.  相似文献   

14.
Transition Metal substituted Gallanes: Synthesis and X-Ray Structures of [(CO)4CoGaEt2(NC7H13)], [(PMe3)(CO)3CoGaCl2(NMe3)], [(CO)4CoGaCl3]K, and [(CO)5MnGaEt2(NC7H13)] The transition metal substituted gallanes [(CO)5MnGaEt2(NC7H13)] ( 1 ), [(PMe3)(CO)3CoGaCl2 · (NMe3)] ( 2 ), [(CO)4CoGaEt2(NC7H13)] ( 3 ), and [(CO)4CoGaCl3]K ( 4 ) were obtained by the reaction of the potassium/sodium salts of the manganese- and cobaltcarbonylmetallates with the chlorogallium species ClGaEt2(NC7H13), Cl3Ga(NMe3), and GaCl3. The structures were established by single crystal X-ray analysis 1 : space group P21/c (I.T.-No.: 14); Z = 4; a = 1425.4(2) pm, b = 1007.4(1) pm, c = 1429.9(3) pm; β = 113.92(1)°; 2 : space group P21/m (I.T.-No.: 11); Z = 2; a = 746.1(1) pm, b = 1131.2(1) pm, c = 1061.5(1) pm; β = 101.87(1)°; 3 : space group P21/c (I.T.-No.: 14); Z = 8; a = 1405.9(2) pm, b = 1786.2(2) pm, c = 1430.9(2) pm; β = 91.47(1)°; 4 : space group P21/c; Z = 4; a = 1185.7(1) pm, b = 895.4(1) pm, c = 1144.7(3) pm; β = 106.47(2)°. The model compounds [{L′(CO)3Co}GaX2L] (L′ = CO, PH3; L = NH3, X = H, Cl) with polar σ(Co–Ga) bonds and the effect of the substituent on the bond length are characterized with DFT-calculations.  相似文献   

15.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

16.
17.
The Crystal Structures of (NBu4)[(Ph3Sn)3(MoO4)2] and (NBu4)[(Ph3Sn)3(MoO4)2]·CH3CN: Organotin Molybdates with Novel 3D Networks The reaction of (NBu4)2[Mo6O19] with Ph3SnCl and NBu4OH in acetonitrile as solvent leads to the formation of (NBu4)[(Ph3Sn)3(MoO4)2] ( 5 ). 5 and (NBu4)[(Ph3Sn)3(MoO4)2]· CH3CN 6 have been characterized by single crystal structure analysis at 220 K. 5 crystallizes monoclinic with a = 1429.5(4) pm, b = 2292.2(3) pm, c = 2269.7(5) pm, β = 107.42(3)°, space group Cc, 6 crystallizes orthorhombic with a = 1820.5(1) pm, b = 1848.6(2) pm and c = 2143.9(1) pm, space group P212121. The crystal structures of 5 and 6 consist of isolated (NBu4)+ cations and anionic 3D networks of Ph3SnO2 trigonal bipyramides and MoO4 tetrahedra which are linked by common oxygen atoms.  相似文献   

18.
Synthesis of Phenylnitrene Complexes with N-Trimethylsilylaniline. II. Characterization and Crystal Structure of the Rhenium(V) Complexes mer-[Re(NPh)Cl3(NH2Ph)(Ph3P)] and trans-[Re(NPh)(OMe)Cl2(Ph3P)2] Reaction of [ReOCl3(Ph3P)2] with N-trimethylsilylaniline yields mer-[Re(NPh)Cl3(Ph3P)2], which reacts under air with excess of N-trimethylsilylaniline to form [Re(NPh)Cl3 · (NH2Ph)(Ph3P)]. Crystallization from CH2Cl2/MeOH affords [Re(NPh)(OMe)Cl2(Ph3P)2] as an additional product. [Re(NPh)Cl3(NH2Ph)(Ph3P)] crystallizes in the monoclinic space group P21/n with a = 1 192.3(3); b = 1 918.9(3); c = 1 266.3(3) pm; β = 101.71(1)°; Z = 4. The rhenium atom has a distorted octahedral environment with the Cl atoms in meridional positions. The phenyl nitrene ligand is coordinated with an almost linear arrangement Re? N1? C40 = 166.8(6)° and with a bond distance Re?N = 170.5(6) pm. [Re(NPh)(OMe)Cl2(Ph3P)2] · 1/2CH2Cl2 crystallizes in the triclinic space group P1 : a = 1 103.1(4); b = 1 227.9(4); c = 1 711.3(5) pm; α = 70.48(3)°; β = 72.71(3)°; γ = 80.03(3)°; Z = 2. The rhenium atom exhibits a distorted octahedral coordination with the Cl atoms and the phosphine ligands in trans positions. As a consequence of the competition of the nitrene ligand and the trans-coordinated methoxy group the Re?;N bond length is slightly lengthened to 173.2(7) pm, while the Re? O bond length of 193.4(6) pm is short. The bond angles Re? N? C70 and Re? O? C80 are 173.3(7)° and 139.1(7)°, respectively.  相似文献   

19.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN] The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN] ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311.  相似文献   

20.
Inhaltsübersicht. Die Titelverbindung entsteht neben CuN3 · PPh3 bei der Einwirkung von Natriumazid auf CuCl2 und Triphenylphosphan in siedendem Acetonitril bei Anwesenheit von 15-Krone-5 als Lösungsvermittler für NaN3. (Ph3PNPPh3)2[Cu(N3)4] bildet schwarze Kristalle, die wir durch das IR-Spektrum und durch eine röntgenographische Strukturanalyse charakterisiert haben. Raumgruppe Pbca, Z = 4, (4245 beobachtete unabhängige Reflexe, R = 7,2%), Gitter-abmessungen (20°C):a = 1980, 1;b = 1618,8; c = 2014,3 pm. Die Verbindung besteht aus Kationen [Ph3PNPPh3]+ und Anionen [Cu(N3)4]2– der Symmetrie Ci, in denen das Cu-Atom planar von den α-N-Atomen der Azidgruppen mit Cu–N-Abständen von 197,2(4) und 189,5(4) pm umgeben ist. Synthesis and Crystal Structure of (Ph3PNPPh3)2[Cu(N3)4] The title compound is prepared besides CuN3 · PPh3 by the reaction of sodium azide with CuCl2 and PPh3 in boiling acetonitrile in the presence of 15-crown-5. (Ph3PNPPh3)2[Cu(N3)4] forms black crystals, which have been characterized by their IR spectrum as well as by an X-ray structure determination. Space group Pbca, Z = 4 (4245 observed independent reflexions, R = 0.072), lattice dimensions (20°C): A = 1980.1; b = 1618.8; c = 2014.3 pm. The compound consists of Ph3PNPPh3+ cations and anions [Cu(N3)4]2– with symmetry C1, in which the copper atom is planarly surrounded by the four nitrogen atoms of the azide groups with bond lengths Cu–N of 197.2(4) and 189.5(4) pm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号