首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contributions to the Chemistry of Phosphorus. 212. Tetraisopropyldodecaphosphane(4), P12i-Pr4 – Preparation, Properties, and Molecular Dynamics According to an earlier crystal structure analysis, tetraisopropyldodecaphosphane(4) ( 1 ) exhibits the symmetry C2, and the substituents are arranged in all-trans position [3]. We have now found by NMR spectroscopic studies that in solution a second configurational isomer of the symmetry CS ( 1b ) exists in addition to the molecule present in the crystal ( 1a ). The transformation of 1a into 1b , which can only occur through a quasi synchronous inversion at the atoms P3 and P4 or P9 and P10, takes place at a noticeable rate already below room temperature.  相似文献   

2.
Contributions to the Chemistry of Phosphorus. 217. Hexaisopropyloctadecaphosphane(6), P18i-Pr6 – Preparation and Structure Determination by Nuclear Magnetic Resonance Hexaisopropyl-octadecaphosphane(6) ( 1 ) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product, and has been purely isolated as a yellow solid. According to NMR-spectroscopic investigations, 1 contains a new conjuncto-phosphate skeleton consisting of a P11(5)- and a P9(5)-structural element analogous to that of brexane, joined through a common P2-bridge. Thus, 1 is 5,7,8,14,16,18-hexaisopropyl-heptacyclo[13.2.1.02,13.03,11.04,9.06,10.012,17]octadecaphosphane. Compound 1 is formed as a mixture of two configurational isomers 1a and 1b , which probably differ from each other by inversion of the configuration at the (PR)2-bridge of the P9(5) partial structure analogous to that of brexane.  相似文献   

3.
Contributions to the Chemistry of Phosphorus. 223. Hexaisopropylicosaphosphane(6), P20i? Pr6 — Preparation and Structure Determination of Two Constitutional Isomers by Nuclear Magnetic Resonance Hexaisopropyl-icosaphosphane(6) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product. The compound is formed as a mixture of two constitutional isomers 1 and 2 of equal abundance, which have been almost purely isolated by HPLC as a mixture of the diastereomers 1 a , 1 b and in the form of the separate configurational isomers 2 a and 2 b , respectively. According to NMR-spectroscopic investigations, the new conjuncto-phosphane skeletons of 1 and 2 consist of a P13(5)- and a P9(5)-structural element analogous to that of brexane and of two P11(5)-partial skeletons, respectively, joined in each case through a common P2-bridge. Thus, 1 is 6,7,9,16,17,20-hexaisopropyloctacyclo[10.8.0.02,14.03,11.04,8.05,10.013,18.015,19]icosaphosphane and 2 is 7,9,15,17,19,20-hexaisopropyl-octacyclo[14.2.1.15,8.02,14.03,12.04,10.06,11.013,18]icosaphosphane. The phosphorus hydrogen compound P20H6 [22, 2c] should exhibit the same constitutional isomerism.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 230. Hexaisopropyltetradecaphosphane(6), P14i-Pr6, and Hexaisopropylhexadecaphosphane(6), P16i-Pr6 — Formation and Structural Determination by 31P-NMR Spectroscopy Hexaisopropyltetradecaphosphane(6) ( 1 ) and hexaiso-propylhexadecaphosphane(6) ( 2 ) are formed together with other isopropylpolycyclophosphanes by the reaction of i-PrPCl2 with P4 and magnesium and have been enriched to 30 mol% and 10 mol%, respectively. According to 31P-NMR spectroscopic investigations, the novel conjuncto-phosphane skeletons of 1 and 2 are the annelation products of a P5 ring with a P11(5) or a P13(5) partial skeleton, respectively, joined by a common P2 bridge. Thus, 1 is 4,5,6,10,12,14-hexaisopropylpentacyclo-[9.2.1.02,9 .03,7 .08,13]tetradecaphosphane and 2 is 5,6,7,11,14,15-hexaisopropylhexacyclo[7.7.0.02,13 .03,10 .04,8 .012,16]hexadecaphosphane. The phosphorus hydrides P14H16 and P16H6 have the same skeletal structures which are also intermediate stages in the formation of Hittorf's phosphorus.  相似文献   

5.
Contributions to the Chemistry of Phosphorus. 219. Tetraisopropyloctadecaphosphane(4), P18i-Pr4 — Preparation and Structure Determination by Nuclear Magnetic Resonance Tetraisopropyloctadecaphosphane(4) ( 1 ) has been obtained by reaction of i-PrPCl2 with P4 and magnesium and subsequent thermolysis of the crude reaction product, and has been isolated in 95% purity. According to NMR-spectroscopic investigations, 1 contains a conjuncto-phosphane skeleton consisting of a P11(5)- and a P9(3)-structural element analogous to that of deltacyclane, joined through a common P2-bridge. Thus, 1 is 8,14,16, 18-tetraisopropyloctacyclo[13.2.1.02,13.03,11.04,9.05,7.06,10.012,17]octadecaphosphane. Compound 1 is formed as a mixture of two configurational isomers 1 a and 1 b , which differ from each other in their spatial arrangements of the isopropyl group at P8.  相似文献   

6.
Contributions to the Chemistry of Phosphorus. 226. 2,3,4,6-Tetra-tert-butyl-2,4-dioxobicyclo[3.1.0]hexaphosphane, P6Bu O2 Under suitable conditions, the reaction of tetra-tert-butylhexaphosphane, P6Bu ( 1 ), with cumene hydroperoxide gives rise to the corresponding dioxide P6BuO2 ( 3 ) which could be isolated as the adduct P6BuO2 · 0.7 C9H12O2. According to a complete analysis of the 31P{1H}-NMR spectrum compound 3 is 2,3,4,6-tetra-tert-butyl-2,4-dioxobicyclo[3.1.0]hexaphosphane, in which the oxygen atoms are bonded exocyclically to the five-membered phosphorus ring of 1 . When the oxidation reaction proceeds a fission of the bicyclic P6 skeleton takes place.  相似文献   

7.
Contributions to the Chemistry of Phosphorus. 225. Lithium Pentahydrogen Octaphosphide Lithium pentahydrogen octaphosphide, LiH5P8 ( 1 ), belongs to the first reaction products of the metallation of P2H4 with n-butyllithium to be detected. Compound 1 is also formed in the reactions of the tricyclic heptaphosphide Li3P7 or the monocyclic pentaphosphide LiH4P5 with P2H4. In all cases, LiH4P7, LiH8P7, and further not yet identified polyphosphides are formed additionally. The composition and the structure of 1 have been elucidated by 31P-NMR studies, above all a complete analysis of its low-temperature 31P{1H}-NMR spectrum. Hence, compound 1 is 7-lithium-2,5,6-trihydrogen-3-phosphino-bicyclo[2.2.1]heptaphosphide and has a norbornane-type P7 skeleton. At room temperature 1 decomposes to furnish more phosphorus-rich lithium polyphosphides.  相似文献   

8.
Contributions to the Chemistry of Phosphorus. 227. HP4º as a Complex Ligand: Formation and Properties of [(η5-C5H5)2ZrCl(P4H)], [(η5-C5Me5)2ZrCl(P4H)], and [(η5-C5H5)3Zr(P4H)] The novel complexes [(η5-C5H5)2ZrCl(P4H)] ( 1 ), [(η5-C5Me5)2ZrCl(P4H)] ( 2 ), and [(η5-C5H5)3Zr(P4H)] ( 3 ) have been obtained by reaction of a solution of (Na/K)HP4 with the zirconocen derivatives [(η5-C5H5)2ZrCl2], [(η5-C5Me5)2ZrCl2], and [(η5-C5H5)31-C5 H5)Zr] under suitable conditions. The structure of the compounds 1 – 3 , which are only stable in solution, has been elucidated by means of 31P-NMR spectroscopy. It is highly probable that the exo,endo isomer exists in each case. In addition, further isomers of lower relative abundancies have been observed, in which the ligands presumably exhibit a different spatial orientation relatively to each other.  相似文献   

9.
Contributions to the Chemistry of Phosphorus. 200. Tetraisopropyl-tetradecaphosphane(4), P14(i-Pr)4 – Preparation and Structural Characterization Tetraisopropyl-tetradecaphosphane(4) ( 1 ) has been obtained by reacting i-PrPCl2, P4, and magnesium and subsequently thermolysing the crude reaction product, and has been isolated in pure form. Whereas the 31P{1H}-NMR spectrum provides only limited structural information, the 13C{1H, 31P}-DEPT-NMR and the 1H{31P}-NMR spectrum of 1 reveals the presence of two symmetrical configurational isomers 1a and 1c and one asymmetrical diastereomer 1b . This would only be possible, if 1 is 3,4,10,11-tetraisopropyl-hexacyclo[6.6.0.02,6.05,14.07,12.09,13]tetradecaphosphane. When crystallizing 1 pure 1a precipitates, which at +10°C in solution is retransformed into the isomeric mixture 1a , 1b , 1c by inversion of the configuration.  相似文献   

10.
Contributions to the Chemistry of Phosphorus. 233. Li3P7O3 and Li2HP7O2 – the First Oxido Heptaphosphanes(3) The novel oxido heptaphosphanes(3) Li3P7O3 ( 1 ) and Li2HP7O2 ( 2 ) have been obtained by the reaction of trilithium heptaphosphide with cumene hydroperoxide. The compounds 1 and 2 are also formed from lithium pentaphosphacyclopentadienide and cumene hydroperoxide. They are sensitive to oxidation and are pale yellow solids whose structures have been elucidated by means of NMR and IR spectroscopic investigations. In each case, the oxygen atoms are bonded as lithiumoxido groups exocyclically to the heptaphosphanortricyclene skeleton.  相似文献   

11.
Contributions to the Chemistry of Phosphorus. 169. 31P-NMR Spectroscopic Detection and Structure of Hexaphosphane(6), P6H6 Phosphane mixtures containing 5–10 P-% of hexaphosphane(6), P6H6, are obtained by thermolysis of a mixture of chain-type phosphorus hydrides PnHn+2 (n = 2–7) at 25–35°C. According to the complete analysis of the 31P{1H}-NMR spectrum on the basis of selective population transfer experiments, P6H6 has the constitution of 1-phosphino-cyclopentaphosphane. An indication of the constitutional isomer with a six-membered phosphorus-ring and all trans orientation of the hydrogen atoms and the free electron pairs, respectively, has not been found. From the δ(31P) data of the phosphanes with five-membered rings PnHn (n = 5, 6) a relationship for the chemical shifts of this class of compounds as a function of their structural parameters is derived.  相似文献   

12.
Contributions to the Chemistry of Phosphorus. 179. Triisopropyl-undecaphosphane(3), P11(i-Pr)3 – Preparation, Properties, and Molecular Dynamics Triisopropyl-undecaphosphane(3) ( 1 ) has been obtained by reacting i-PrPCl2, P4, and magnesium and subsequently thermolysing the crude reaction product, and has been isolated in pure form. According to a two dimensional 31{1H} n.m.r. spectrum 1 is a 4, 7, 11-triisopropylpentacyclo[6.3.0.02,6.03,10. 05,9]undecaphosphane. Compound 1 is formed as a mixture of two configurational isomers 1a and 1b , which differ from each other in the orientation of the isopropyl groups. When crystallizing pure 1b precipitates, which in solution is retransformed into the isomeric mixture 1a , 1b by inversion of the configuration.  相似文献   

13.
Contributions to the Chemistry of Phosphorus. 235. On the Preparation of Larger Amounts of Diphosphane(4) in the Laboratory The preparation of several hundred grammes of diphosphane(4) by hydrolysis of calcium phosphide in a semicontinuous process as well as the handling of larger amounts of this compound are reported. In comparison with earlier results [12], the yield has been raised by 37 percent with simultaneous increase of the accessible total amount. The white solid which is formed in the preparation and purification of diphosphane(4) is not, as was believed in earlier work [25, 8], triphosphane(5) or another, novel phosphorus hydride but is rather a clathrate compound of diphosphane(4) or the phosphanes PnHn+2 (n = 2–4) and water, respectively.  相似文献   

14.
Contributions to the Chemistry of Phosphorus. 231. Li3P7S3 and Li2HP7S2 — the First Sulfido Heptaphosphanes(3) The novel sulfido heptaphosphanes(3) Li3P7S3 ( 1 ) and Li2HP7S2 ( 2 ) have been obtained by the reaction of Li3P7 with sulfur in tetrahydrofuran under suitable conditions. The compounds 1 and 2 are also formed from LiP5 and sulfur and are only stable in solution below room temperature. According to a complete analysis of the 31P{1H}-NMR spectra, in each case, the sulfur atoms are bonded as sulfido groups exocyclically to the heptaphosphanortricyclene skeleton. Compound 2 reacts with chloro(trimethyl)silane or acetylacetone at one of the two sulfido groups while compound 1 does not form any product with retention of the P7(3) framework.  相似文献   

15.
Contributions to the Chemistry of Phosphorus. 170. Constitutional and Configurational Isomers of Hexaphosphane(8), P6H8 Phosphane mixtures containing 5–10 P-% of hexaphosphane(8), P6H8, are obtained by thermolysis of diphosphane, P2H4, or as residue from distillation of crude diphosphane [3]. By complete analysis of the 31P{1H}-NMR spectrum on the basis of selective population transfer experiments, the following P6H8-isomers with a branched phosphorus skeleton have been identified and structurally characterized: the two diastereomers of 2-phosphinopentaphosphane ( 1a : erythro; 1b : threo), two of the three diastereomers of 3-phosphinopentaphosphane ( 2a : erythro, erythro; 2b : erythro, threo), and the highly symmetric 2,3-diphosphinotetraphosphane ( 3 ). The correlation between the diastereomers and the observed spin systems results from the preferred gauche orientation of neighboring free electron pairs, the dependence of 1J(PP) on dihedral angles as well as the 3J(PP) and 4J(PP) long range couplings. Any indications of the diastereomers of n-P6H8 with an unbranched chain of phosphorus atoms have not been found.  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 245, LiP7(BNEt2)2 and P7(BNEt2)4Cl: Two Novel Polycyclic Boraphosphanes The directed synthesis of a noval tetracyclic heteropolyphosphane skeleton from a tricyclophosphane has been achieved by condensation of Li3P7 · 3DME with Cl(Et2N)B‐B(NEt2)Cl to the diboranonaphosphanide LiP7(BNEt2)2 ( 1 ). When the reaction proceeds the mixed‐substituted diboranonaphosphane P7(BNEt2)4Cl ( 2 ) is formed. According to their 31P NMR spectra 1 and 2 possess a B2P7(3) skeleton analogous to that of the hydrocarbon deltacyclane. Additional weak signals in the 31P NMR spectrum of 2 indicate that also small amounts of the symmetrically substituted diborane(4) P14B6(NEt2)6 ( 3 ) are formed.  相似文献   

17.
Contributions to the Chemistry of Phosphorus. 142. P6(t-Bu)5H – the First Cyclotetraphosphane with a P2 Side Chain The thermolysis of 1, 2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, leads to formation of the hitherto unknown hexaphosphane P6(t-Bu)5H ( 1 ). In the first instance the iso-P5H5 derivative P5(t-Bu)4H [3] is formed, which reacts further with H2(t-BuP)2 or H2(t-BuP)3 yielding 1 . Compound 1 has been isolated in the pure state and structurally characterized as 1-(1,2-di-tert-butyldiphosphino)-2, 3, 4-tri-tert-butyl-cyclotetraphosphane, i. e. as a four-membered ring compound with a P2 side chain. Due to the chirality of the P atoms in the side chain, 1 exists as a mixture of two configurational isomers, the threo-and the erythro-form.  相似文献   

18.
Contributions to the Chemistry of Phosphorus. 236. On Several Physical and Chemical Properties of Diphosphane(4) The density of diphosphane(4) has been measured between ?78°C and +18°C and the value d420 = 1.014 · 0.002 extrapolated. The refractive index of P2H4 was determined to be n20 = 1.66 ± 0.01. The surface tension at 0°C and ?50°C was measured to be σ = 34 and 42 dyn · cm?1, respectively. In the UV absorption spectrum, gaseous P2H4 exhibits a broad absorption band at λmax = 2 220 Å, in n-hexane solution, this band is shifted somewhat to shorter wave-lengths. The molar extinction coefficient was determined to be ? ≈? 900 1 · mol?1 · cm?1. As a result of photolytic decomposition, absorptions for PH3 and more phosphorus-rich hydrides also occur. The solubility behavior of P2H4 in various organic solvents and the stabilities of the resultant solutions have been investigated. At 0°C, the solubility of diphosphane(4) in water was found to be ± 035 ± 0.003 g P2H4/100 g solution and that of water in diphosphane(4) to be 43.2 ± 1.6 g H2O/100 g solution. The system diphosphane(4)/methanol also exhibits a miscibility anomaly. The IR spectra of liquid P2H4 and of its solutions in various solvents revealed, in accord with the results of nuclear magnetic resonance spectroscopy [7], that diphosphane(4) is practically not associated. Weak interactions through hydrogen bridging bonds occur with pyridine and methanol in which P2H4 serves as the proton donor and, in the latter case, also as proton acceptor. For the thermolysis of diphosphane(4), it has been found that the primary step comprises a disproportionation with inter-molecular elimination of PH3 and formation of triphosphane(5). With further progress of the thermolysis, in dependence on the reaction conditions, mixtures of various phosphanes of differing composition are formed. Photolysis gives rise to phosphane mixtures having similar compositions. With aqueous silver salt and iodine solutions, diphosphane(4) reacts as a reducing agent; with sodium hydroxide solution, it reacts by a slow disproportionation as well as by formation and degradation of the subsequently formed polyphosphides. On reaction with triphenylmethyl, triphenylmethane and a yellow solid of varying composition are formed. The reaction of diazomethane with diphosphane(4) leads to the preferential insertion of the carbene in the P? P bond and formation of methylenebis(phosphane).  相似文献   

19.
Contributions to the Chemistry of Phosphorus. 138. P5(t-Bu)4H — the First Derivative of iso-P5H5 The thermolysis of 1,2-di-tert-butyldiphosphane, H(t-Bu)P? P(t-Bu)H, yields under suitable conditions the compound P5(t-Bu)4H ( 1 ) as the main product. Besides, the tert-butylphosphanes t-BuPH2, P6(t-Bu)5H ( 2 ), H2(t-BuP)3, and (t-BuP)4 are formed. 1 has been isolated in the pure state and structurally characterized as 1-(tert-butylphosphino)-2,3,4-tri-tert-butyl-cyclotetraphosphane. Hence, compound 1 is a derivative of iso-P5H5 with a branched phosphorus skeleton built up by a four-membered ring and a phosphorus side chain.  相似文献   

20.
Contributions to the Chemistry of Phosphorus. 168. About the Isomers of Tetraphosphane(6), P4H6 Additional informations about the 31P-NMR parameters of d,l- and meso-n-P4H6 as well as of iso-P4H6 have been obtained by 31P-NMR spectroscopic investigations of mixtures of phosphanes containing 26—48 P-% of tetraphosphane(6). On the basis of the differences in the 3J(PP)-coupling constants the observed AA′BB′-spin systems have been reassigned to the various diastereomers of n-P4H6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号