首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
The local structure in crystals, melts, supercooled melts, and glasses of sodium silicate hydrates of composition Na2O · SiO2 · nH2O (n = 9, 6, 5) is studied by variable temperature 1H, 23Na, and 29Si MAS NMR spectroscopy. Detailed in situ investigations on the melting process of the crystalline materials reveal the importance of H2O motion in the melting mechanism. Depending on the local coordination, crystallographically distinct Na sites show different behaviour during the melting process. Upon melting, the monomer silicate anions present in the crystalline hydrates undergo condensation reactions to oligomeric silicate anions. No recrystallization but glass formation occurs at low temperature if the melts were heated initially about 10 K above the melting point. In the glasses also oligomeric silicate anions are present with a preference for cyclotrimer species. In situ MAS NMR investigations and electric conductivity measurements of the melts, supercooled melts, and glasses suggest the distinction of three temperature ranges characterized by different local structure and dynamics of the sodium cations, water and silicate anions. These ranges comprise a glass and glass transition range A at low temperatures, an aggregation region B at intermediate temperatures, and a solution or electrolyte region C at high temperatures. In region B aggregation of sodium water complexes to hydrated polycation clusters is suggested, the dynamic behaviour of which is clearly different to that of the silicate anions, indicating that no long-lived contact ion pairs between sodium cations and silicate anions are formed.  相似文献   

2.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

3.
High-resolution 29Si, 27Al, 15N, and 17O MAS NMR spectra have been obtained for both glass and crystalline samples of lanthanum U-phase, La3Si3Al3O12N2. Previous X-ray single-crystal studies have shown that this phase is iso-structural with rare-earth gallogermanates of the type Ln3Ga5GeO14, the atomic arrangement consisting of layers of [(Si,Al)(O,N)4] tetrahedra in the x, y plane of the hexagonal unit cell, linked together in the z-direction by [AlO6] octahedra, with rare-earth cations occupying the large holes in this network. However, previous studies obtained only a limited amount of information about cation and anion ordering, mainly deduced from bond-length data. NMR spectra have not only enabled the change in structure from glass to crystalline ceramic to be monitored, but have also given detailed ordering information about the latter, indicating partial disorder of both (Si,Al) and (O,N) on their respective sites in the tetrahedra.  相似文献   

4.
A general strategy of structural analysis of alumina silicate by combining various solid‐state NMR measurements such as single pulse, multi‐quantum magic angle spinning, double‐quantum homo‐nuclear correlation under magic angle spinning (DQ‐MAS), and cross‐polarization hetero‐nuclear correlation (CP‐HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of 27Al in single pulse, DQ‐MAS, and even in triple‐quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ‐MAS methods for homo‐nuclear correlations between both 27Al–27Al and 29Si–29Si and by CP‐HETCOR for hetero‐nuclear correlations between 27Al–29Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina‐silicate minerals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

6.
High-resolution 17O NMR spectra have been collected for crystalline samples of lanthanum new phase, La3Si8N11O4. In conjunction with previously published 29Si and 15N spectra obtained for this phase, and in the light of the high-quality crystal structure data reported recently, a more detailed interpretation of the NMR spectra is presented than was possible in previous studies. The non-bridging oxygens in the structure are responsible for the single sharp peak seen in the 17O spectrum at 188 ppm; the remaining oxygens, occupying bridging sites shared with nitrogen, show up only weakly on the 17O spectrum as a broad diffuse band centered around zero ppm. The peak at −57.3 ppm on the 29Si spectrum is believed to correspond to an overlap of [SiN4] and [SiON3] environments, with the −68.2 ppm peak corresponding to an [SiO2N2] environment.  相似文献   

7.
Three types of silicon podands, Me2Si(OR)2, EtSi(OR)3 and PhSi(OR)3, where R is a polyoxaethylene chain with different numbers of oxygen atoms (two, three or four), were obtained and studied by 1H, 13C and 29Si NMR methods. NMR spectra of 1H, 7Li, 13C, 23Na and 29Si nuclei were also used for the study of lithium, sodium and rubidium complexes with the silicon podands. Theoretical calculations were performed using the PM3 hamiltonian. The heats of reactions between the compounds obtained and SbCl5 were determined.  相似文献   

8.
Starting from high-resolution solid-state29Si NMR spectra of two modifications of Y2Si2O7 with different Si-O-Si bond angles it was verified that increasing bond angles cause high-field isotropic29Si chemical shifts.
  相似文献   

9.
Crystalline sodium aluminogermanate hydroxosodalite hydrate Na6+x[Al6Ge6O24](OH)x · nH2O with x ≈ 1.6 and n ≈ 3.0 has been synthesized by reacting Al2O3, GeO2 and NaOH solution under hydrothermal conditions, and characterized by means of simultaneous thermal analysis, differential scanning calorimetry, X-ray and neutron diffraction as well as 1H and 23Na MAS NMR and IR spectroscopy. The material undergoes a reversible structural phase transition at Tc = 166 K (heating mode), which is actually a complex two-step transformation as detected in DSC measurements. Structure refinements of the cubic high-temperature form (cell constant a = 9.034(2) Å, room temperature) with single-crystal X-ray and powder neutron diffraction data have not yielded overall satisfactory results, probably due to the solid-solution character of the hydrosodalite. The refinements nevertheless demonstrate that (i) the sodalite host framework is a strictly alternating array of corner-linked AlO4 and GeO4 tetrahedra, and (ii) most polyhedral [4668] cavities are occupied by four sodium cations and one orientationally disordered hydrogen dihydroxide anion, H3O2?, which possesses a strong central hydrogen bond. Variable-temperature 1H MAS NMR spectra unambiguously confirm the presence of H3O2? ions and, in addition, reveal a dynamical intraionic exchange between the central and terminal protons and a rotational diffusion of those anions to occur in the high-temperature form. The nature of the guest complexes filling the remaining cages could not be unambiguously determined. Results are compared with those obtained in recent studies on the related sodium aluminosilicate hydrosodalite system of the general formula Na6+x[Al6Si6O24] (OH)x · nH2O.  相似文献   

10.
Crystalline silicotitanate (CST), HNa3Ti4Si2O14·4H2O and the Nb-substituted CST (Nb-CST), HNa2Ti3NbSi2O14·4H2O, are highly selective Cs+ sorbents, which makes them attractive materials for the selective removal of radioactive species from nuclear waste solutions. The structural basis for the improved Cs+ selectivity in the niobium analogs was investigated through a series of solid-state magic angle spinning (MAS) NMR experiments. Changes in the local environment of the Na+ and Cs+ cations in both CST and Nb-CST materials as a function of weight percent cesium exchange were investigated using 23Na and 133Cs MAS NMR. Framework changes induced by Cs+ loading and hydration state were investigated with 29Si MAS NMR. Multiple Cs+ environments were observed in the CST and Nb-CST material. The relative population of these different Cs+ environments varies with the extent of Cs+ loading. Marked changes in the framework Si environment were noted with the initial incorporation of Cs+, however with increased Cs+ loading the impact to the Si environment becomes less pronounced. The Cs+ environment and Si framework structure were influenced by the Nb-substitution and were greatly affected by the amount of water present in the materials. The increased Cs+ selectivity of the Nb-CST materials arises from both the chemistry and geometry of the tunnels and pores.  相似文献   

11.
《Microporous Materials》1995,3(4-5):497-510
23Na Magic-angle spinning (MAS), double rotation (DOR) and two-dimensional nutation nuclear magnetic resonance (NMR) and static 139La NMR spectroscopy were applied to study the location and migration of sodium and lanthanum cations in faujasites. Generally, 23Na MAS NMR spectroscopy of as-exchanged and hydrated zeolites LaNaY was used for the quantitative determination of non-localized Na+ in the large cavities at a 23Na NMR shift of −9 ppm and of sodium cations observed at −13 ppm. The latter originate from Na+ ions located on position SII in the large cavities, on position SI in the hexagonal prisms and on positions SII′ and/or SI′ in the sodalite cages. The 23Na MAS NMR signal at about −13 ppm was found to be caused by two coonents. The component that is characterized by a quadrupolar interaction causing a field-dependent shift and a signal at v1 = 2vrf in the two-dimensional quadrupolar nutation spectra is attributed to Na+ enclosed in the sodalite cages. The 23Na MAS NMR spectra of dehydrated lanthanum-exchanged faujasites are characterized by a low-field Gaussian line of Na+ located on SI positions in the hexagonal prisms and a high-field quadrupole pattern of Na+ located on positions SII and SI′. The migration of lanthanum cations from the large cavities to position SI′ in the sodalite cages was monitored by 139La NMR spectroscopy and verified by a theoretical estimation of the electric field gradient. The lanthanum migration was found to be coupled with a strain of SiOT and AlOT angles observed by 29Si and 27Al MAS NMR high-field shifts, respectively.  相似文献   

12.
The Zintl phases M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4 feature a common structural unit, the Si44– anion. The coordination of the anions by the cations varies significantly. This allows a systematic investigation of the bonding situation of the anions by 29Si NMR spectroscopy. The compounds were characterized by powder X‐ray diffraction, differential thermal analysis, magnetic susceptibility measurements, 23Na, 29Si, 87Rb, 133Cs NMR spectroscopy, and quantum mechanical calculation of the NMR coupling parameter. The chemical bonding was investigated by quantum mechanical calculations of the electron localizability indicator (ELI). Synthesis of the compounds results for all of them in single phase material. A systematic increase of the isotropic 29Si NMR signal shift with increasing atomic number of the cations is observed by NMR experiments and quantum mechanical calculation of the NMR coupling parameter. The agreement of experimental and theoretical results is very good allowing an unambiguous assignment of the NMR signals to the atomic sites. Quantum mechanical modelling of the NMR shift parameter indicates a dominant influence of the cations on the isotropic 29Si NMR signal shift. In contrast to this a negligible influence of the geometry of the anions on the NMR signal shift is obtained by these model calculations. The origin of the systematic variation of the isotropic NMR signal shift is not yet clear although an influence of the charge transfer estimated by calculation using the QTAIM approach is indicated.  相似文献   

13.
Incomparisonwiththealuminumanalogues,boroncontainingMFItypezeolitehasbeenexpectedtohavemilderacidicpropertiesandspecificcatalyticperformance.Uptonow,muchworkhasbeendoneinthisaspect[1—5],includingsynthesis,structuralcharacterizationandcatalysis,etc.Therear…  相似文献   

14.
Samples in the system Lu2−xYxSi2O7 (0?x?2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu2Si2O7 and Y2Si2O7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y2Si2O7 in β-Lu2Si2O7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Y2Si2O7 and the results compare favorably with the values obtained experimentally.  相似文献   

15.
Powder samples as well as red and transparent single crystals of the Zintl phase Cs7NaSi8 were synthesized and characterized by means of X‐ray diffraction and differential thermal analysis. Cs7NaSi8 was found to be isotypic to the recently reported phase Rb7NaSi8. It crystallizes in the Rb7NaGe8 structure type forming trigonal pyramidal Si44– anions. Two unique environments of the cations are observed, a linear arrangement [Na(Si4)2]7– with short Na–Si distances of 3.0 Å and a Cs2 atom coordinated by six Si44– anions with long Cs–Si distances of 4.2 Å. The bonding situation was investigated by a combined application of 29Si, 23Na, and 133Cs solid‐state NMR spectroscopy and quantum mechanical calculations of the NMR coupling parameters. In addition the electronic density of states (DOS), the electron localizability indicator (ELI) and the atomic charges using the QTAIM approach were studied. Good agreement of the calculated and experimental values of the NMR coupling parameters was obtained. An anisotropic bonding situation of the silicon atoms is indicated by the chemical shift anisotropy being similar to Rb7NaSi8. Confirmation is given by the observation of one lone‐pair‐like feature for each silicon atom and two types of two‐center Si–Si bonds using the ELI. Calculation and NMR spectroscopic determination of the 23Na and 133Cs electric field gradients prove anisotropies of the charge distribution around the cations. Due to the similar values for the Na atoms in M7NaSi8 (M = Rb, Cs) equal bonding situations can be concluded. The much larger anisotropy of the charge distribution of the Cs atoms can be addressed as the main difference to Rb7NaSi8.  相似文献   

16.
Temperature Dependent Single Crystal Investigations of α-Na3Hg In contrast to β-Na3Hg (rhomboedrally distorted Li3Bi-type) α-Na3Hg crystallizes in a hitherto poorly understood variant of the Na3As-type. Based on temperature dependent measurements of poly- and single crystalline samples (?100°C < T < +35°C) we show, that in particular the sodium atoms (Na1) located in the region of the octahedral Hg6-holes show a pronounced temperature dependent dynamical behaviour. To a lesser extend this is also true for the tetrahedrally coordinated Na-atoms (Na2). With increasing temperature the former ones more and more approach the centers of the opposite triangular faces of mercury atoms, limiting the Hg6-octahedra along [001]. Occupation of the latter positions by sodium atoms would lead to unusual short interatomic distances dNa? Hg. However before reaching this unreasonable situation α-Na3Hg decomposes under formation of β-Na3Hg.  相似文献   

17.
The structural units in diphenylsilanediol/titanium-isopropoxide solutions with molar ratio Si:Ti between 1:0.1 and 1:5 were examined by means of 29Si and 17O NMR. The main component in solutions with molar ratio Si/Ti=1:0.1 is the chain-like octaphenyltetrasiloxanediol. With increasing Ti-isopropoxide content (1:0.25–1:05) Si–O–Ti units of the spirocyclic titanosiloxane Ti[O5Si4(C6H5)8]2 prevail in the solutions accompanied by the chain-like tetrasiloxanediol. The 29Si NMR spectra of 1:1 solutions indicate a lot of different Si containing building units with chemical shifts mainly between-40 and-46 ppm. The signals with a chemical shift between-40 and-46 ppm are probably caused by Si atoms which are connected via oxygen bridges directly (Si–O–Ti) or indirectly (Si–O–Si–O–Ti) with titanium. Contrary to the 1:1 solutions only one or two different species with Si–O–Ti units are present in high Ti-alkoxide containing solutions (1:5). 29Si and 17O NMR results reveal a quick hydrolysis of the Ti–O–Si bonds to titanium-oxo-hydroxo-polymers and phenylsiloxanediols or their isopropyl esters after the addition of water to the solutions. This separation into species only containing either Ti–O–Ti or Si–O–Si bonds can entail a decreased homogeneity of the reaction products on a molecular level.  相似文献   

18.
Raman and 29Si MAS NMR spectroscopies are evaluated for the identification of three-membered rings (3MR) in framework oxide materials. Raman and 29Si MAS NMR spectra from the 3MR-containing materials euclase, phenakite, clinohedrite, willemite, lovdarite, VPI-7, ZSM-18 and dipotassium zinc tetrasilicate are presented. The Raman spectra from these materials do not exhibit common bands representing vibrational modes assignable to individual 3MR. The dense beryllosilicate and zincosilicate minerals exhibit 29Si MAS NMR resonances indicative of silicon positioned in 3MR while the molecular sieves lovdarite and VPI-7 give 29Si MAS NMR resonances that can be assigned to silicons located at the center of “spiro-5” units that are constructed from two 3MR. Silicon atoms located in isolated 3MR in the molecular sieves ZSM-18 and dipotassium zinc tetrasilicate do not exhibit 29Si MAS NMR resonances that can be distinguished from those assigned to silicons residing in 4MR and larger.The 29Si MAS NMR spectra from the new materials VPI-8, VPI-9 and VPI-10 do not exhibit 29Si MAS NMR resonances indicative of “spiro-5” units. The presence of isolated 3MR in these materials cannot be ruled out from the 29Si MAS NMR spectroscopic results.  相似文献   

19.
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7.  相似文献   

20.
Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of 27Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X‐ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded 27Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well‐defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X‐ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with 29Si MAS NMR spectra. Factor analysis of 27Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of 27Al MAS NMR spectra is significantly shorter than that of 29Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号