首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Structures with AIB2? and BaAl4?type Units. I The Compounds Sr4Pd5P5 and Sr2Pd3P3 Sr4Pd5P5 (Cmcm, a = 4.177(1) Å, b = 31.377(5) Å, c = 8.581(2) Å, Z = 4) und Sr2 Pd3P3(Pmmm, a = 4.199(1) Å, b = 4.212(1) Å, c = 34.227(4) Å, Z = 4) have been prepared by heating the elements. Both structures contain exclusively units characteristic for the AIB2? and BaAl4?type. The ratio between isolated P-atoms and P2?pairs is interpreted with an ionic splitting of the formulas.  相似文献   

2.
On the Synthesis of Alkaline-Earth Dihalides and the Structures of Ca3Br2CBN and Sr3Cl2CBN The reaction of alkaline-earth carbonates with ammonium chloride or bromide yields alkaline-earth dihalides at relatively low temperatures (300°C). Ca3Br2CBN and Sr3Cl2CBN were synthesized in sealed niobium containers at 950°C from the metal, its dihalide, boron nitride and graphite. The crystal structure of Sr3Cl2CBN was refined from single crystal data. Sr3Cl2CBN crystallizes isotypic with Ca3Cl2CBN in the orthorhombic space group Pnma (No. 62) with a = 1448.4(2) pm b = 405.46(5) pm, c = 1170.0(1) pm. The lattice constants of Ca3Br2CBN and Sr3Cl2CBN were determined by orthorhombic indexing of the powder patterns (Ca3Br2CBN: a = 1444.3(2) pm, b = 390.64(6) pm, c = 1139.2(2) pm; Sr3Cl2CBN: a = 1444.0(4) pm, b = 405.27(8) pm, c = 1167.8(2) pm). There was no success in preparing homologues with Barium.  相似文献   

3.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

4.
On the Reaction of Tellurium with Tungsten Halides: Synthesis and Crystal Structure of Te7WOCl5, a Compound with a Polymer Tellurium Cation The reaction of tellurium with WOCl4 in the presence of a large excess of WCl6 in a sealed evacuated glass ampoule at 150°C yields beside the main product Te8(WCl6)2 a small amount of Te7WOCl5. The crystal structure determination (orthorhombic space group Pcca, lattice parameters at 173 K: a = 2 596.5(9) pm, b = 810.0(3) pm, c = 775.7(2) pm) shows that Te7WOCl5 is built of one-dimensional band shaped polymeric tellurium cations, one-dimensional associated pyramidal WOCl4? anions and of isolated Cl? anions. Te7WOCl5 can thus be formulated as [Te72+]n [WOCl4?]n (Cl?). The structure is closely related but not isotypic to the bromine containing analogue Te7WOBr5. The difference between the two structures lies in different directions of the polar [WOX4?]n chains (X = Cl, Br). The strongly elongated thermal ellipsoid of one tellurium atom is shown to be caused by thermal vibration by determing the crystal structure of Te7WOCl5 at three different temperatures (223, 173 and 123 K). All displacement parameters of all atoms can be extrapolated to zero for 0 K.  相似文献   

5.
Preparation and Crystal Structure of Nd4Ti9O24 The compound Nd4Ti9O24 was prepared by heating mixtures of Nd2O3/TiO2 (1 : 4.5) at temperatures of T = 1 330°C in air (2× 1d). Single crystals of Nd4Ti9O24 were obtained by chemical transport reaction (T2→T1; T1 = 1000°C, T1 = 900°C, 14 d) using chlorine (p(Cl2, 298 K) = 1 atm) as transport agent with Nd4Ti9O24 as starting material. Nd4Ti9O24 crystallizes in the orthorhombic space group Fddd (No. 70) with a = 13.9926(11) Å, b = 35.2844(21) Å, c = 14.4676(17) Å (Z = 16). The structure was refined to give R = 4.0% and R, = 3.7%. Main building units are TiO6 octahedra, NdO6 distorted square antiprisms and NdO6 octahedra.  相似文献   

6.
The Crystal Structures of α- and β-K3OCl The orange coloured compound K3OCl has been prepared. It exists in a low temperature modification (α-K3OCl) and a high temperature modification (β-K3OCl). The transition temperature is 364 ± 5 K. The crystal structures were determined by x-ray diffraction. α-K3OCl crystallizes at room temperature in the orthorhombic space group Pbnm (Z = 4) with the cell parameters a = b = 723.9(2) pm and c = 1 027.7(2) pm in the anti-GdFeO3-structure type. The high temperature modification β-K3OCl crystallizes (Z = 1) in the cubic space group Pm3m in the β-Ag3SI-structure type with a = 516.2(2) pm (T = 393 K).  相似文献   

7.
About the Effect of Substitution on the Crystal Structure of SrNi2P2 With several series of mixed crystals the effect of substitution on the crystal structure of SrNi2P2 (polymorphic, the structures are variants of the ThCr2Si2 type) is investigated by X-ray methods. In the compound Ni completely can be substituted by Co and Cu respectively and also P by As; in Sr1–xCaxNi2P2 there is a gap of the miscibility between 0.3 ≤ x ≤ 0.6. A low substitution of the several elements more than proportionally changes the structure parameters. In this range the mixed crystals with Ca, Cu, and As, respectively, undergo first order phase transitions with significant changes of the bond distances, which will be interpreted by the results of band structure calculations.  相似文献   

8.
Synthesis and Properties of the Layered Perovskite Phase Sr3Mo1.5Zn0.5O7‐δ The new layered perovskite phase Sr3Mo1.5Zn0.5O7‐δ was synthesized by solid state reaction using a Zn/ZnO oxygen buffer. The crystal structure was refined from X‐ray powder pattern by the Rietveld method. The compound crystallizes tetragonal in the space group I4/mmm (no. 139) with the lattice parameters a = 3.9631(3) Å, c = 20.583(1) Å. An oxygen deficiency corresponding to δ ≈ 0.25 was determinated, indicating the presence of molybdenum in mixed valence (Mo4+ and Mo6+).  相似文献   

9.
Structure of a High Temperature Modification of Calciumultraphosphate, CaP4O11, and its Crystallographic Orientation Relation with Respect to the Room Temperature Phase The title compound was obtained by heating a mixture of CaCO3, P4O10 in excess and H3PO4 in excess as well to 500°C and annealing for 10 days. The Calciumultraphosphate, CaP4O11, transforms at 85°C in a hot nitrogen gas stream into a second modification with orthorhombic space group (Aba2), the structure of which was determined: a = 12.683 Å, b = 12.090 Å, c = 12.627 Å, Z = 8, layer structure, R = 0.034. The crystallographic orientation relation between the two phases of CaP4O11 was determined.  相似文献   

10.
Single Crystal X-Ray Analysis of Sr3TiGa10O20 Single crystals of Sr3TiGa10O20 were prepared by recrystallisation of a molten oxide mixture and investigated by X-Ray technique. It crystallizes with monoclinic symmetry, space group C–C2/m, a = 15.451, b = 11.579, c = 5.051 Å, β = 108.57°, Z = 2. Sr3TiGa10O20 belongs to the Pb3GeAl10O20 type, showing Ga3+ in tetrahedral and octahedral coordination. The octahedral coordinated point positions are occupied by Ga3+ and Ti4+ statistically.  相似文献   

11.
Preparation and Structure of LnNb7O19 (Ln = La, Ce) Two new ternary compounds, LaNb7O19 and CeNb7O19, could be prepared and characterized. At temperatures about 900°C already decomposition of both compounds will be initiated, but at lower temperatures (800°C) no reaction between the binary components occured. Single crystals could be obtained by chemical transport reactions (T2 → T1; T2 = 800°C; T1 = 780°C). Chlorine for mineralization or as transport agent is absolutely indispensable for preparation. Single crystal investigations on LaNb7O19 (R = 4.4%; Rw = 4.19%) result in the trigonal space group P3. The cell dimensions are a = 6.2531(2) A; c = 20.0685(10) Å; Z = 2. The structure can be described as to be build up by layers of 8-coordinated La and 6-coordinated Nb, alternating with layers of edge-sharing pentagonal NbO7-bipyramids. Corresponding to the unusual sequence of layers the structure of LnNb7O19 (Ln = La,Ce) is the first example of a trigonal member of a family of structures, which has been described in detail by Jahnberg. The most examples are represented by tantalates, but only a few niobates related to these structures are known.  相似文献   

12.
Synthesis and Structure of (Ph3PAu)3Mn(CO)4 Photolysis of (Ph3PAu)Mn(CO)5, Ph3PAuN3 and Ph3PAuNCO yields (Ph3PAu)3Mn(CO)4 ( 1 ). 1 crystallizes in the monoclinic space group P21/n with a = 1 031.3(1); b = 3 095.2(3), c = 3 386.3(3) pm; β = 97.58(3)°; Z = 8. The crystal structure contains two symmetry independent clusters 1 of the same geometry. Their inner core MnAu3 forms a rhombus with distances Mn? Au of about the same lengths between 258.4(4) and 262.0(4) pm. The distances Au? Au range from 276.6(2) to 281.3(2) pm. The bonding in 1 is discussed and compared with those of (Ph3PAu)3Co(CO)3 having the same total number of electrons but a tetrahedral framework.  相似文献   

13.
Chemical Transport and Structure of UNb2O7 – a New Type of MM′2O7 Powdery UNb2O7 could be obtained by heating an äquimolar mixture of UO2 and Nb2O5 in an evacuated silica tube at 1 100°C. Chemical transport in a small temperature gradient with NbCl5/Cl2 as transport agent was successfully used for crystal synthesis. UNb2O7 crystallizes with orthorhombic symmetry; the lattice constants are a = 3.8012(7) Å; b = 21.170(8) Å; c = 6.440(2) Å and Z = 4. Structure determination in the space group Cmcm (nr. 63) let to R = 0.021 (Rw = 0.019). U and Nb1 have CN = 7, Nb2 has CN = 6 (5 + 1). Uranium is surrounded by oxygen like an doma-octahedron, niobium1 like an pentagonal-bipyramid and niobium2 like an distorted octahedron.  相似文献   

14.
Thermal Behaviour of Li3MnO4. II. α- and β-Li2MnO3 By thermal decomposition of Li3MnO4 we obtained two new forms of Li2MnO3: α-Li2MnO3 crystallizes due to Guinier-Simon photographs cubic face-centered with a = 4.092 Å, β-Li2MnO3 hexagonal with a = 4,93, c = 14.24 Å, c/a = 2.89. α-Li2MnO3 is paramagnetic with μ = 3,82 B.M. Below the Neel temperature (≈? 50 K) β-Li2MnO3 is antiferromagnetic. Effective Coordination Numbers, ECoN, are calculated and discussed.  相似文献   

15.
Magnetic Properties of the Cobaltates Na6CoS4, Na6CoSe4, and K6CoS4 The alkali metal cobalt chalcogenides Na6CoS4, Na6CoSe4, and K6CoS4 crystallize in the space group P63mc with Z = 4. The structure is characterized by isolated [CoX4]-tetrahedra. The magnetic susceptibilities show Curie-Weiss behaviour. The deviations at low temperatures are caused by antiferromagnetic interactions. The magnetic moments are discussed with regard to ligand-field parameters.  相似文献   

16.
On the Haloamination of Diselenides. Synthesis and Structure of the Eight-membered Ring Cation [Me2SN2SeMe]2++ N-halogen compounds of benzamidine and S,S-dimethylsulfone diimides react with diselenides by Se? Se-bond cleavage yielding different types of selenium-nitrogen compounds. With N-bromo-benzamidine the diazene derivatives RSeN(Ph)CN?NC(Ph)NSeR 2a, b (a : R = Me; b : R = Ph) are formed. In the reaction of N,N′-Dichloro-S,S-dimethylsulfone diimide, Me2S(NCl)2, with diselenides cyclic hetero-selenonium salts [(Me2SN2SeR)Cl]2 ( 4a, b ) are obtained. The structure of the eight membered ring compound 4a was determined by x-ray crystallography (space group P1 , Z = 1) and compared with that of the isotypic sulfonium salt [(Me2SN2SMe)Br]2 ( 3a ).  相似文献   

17.
18.
The synthesis of bulk Y2Ba4Cu7O15-δ superconductor at atmospheric oxygen pressure via solid state sintering is reported. Temperature ranging from 860 to 890 °C as well as time interval over 2 to 15 days were used to investigate the formation of the Y2Ba4Cu7O15-δ phase. A time-temperature profile characterizing the conditions for the preparation of Y2Ba4Cu7O15-δ phase suggests the optimal condition to be sintering at 890 °C for over 10 days. Detailed results of X-ray diffraction, electrical resistivity, iodometric titration and magnetization measurements are described.  相似文献   

19.
20.
On the Crystal Structure of Barium Acetylene Dicarboxylate Monohydrate – Ba[C2(COO)2] · H2O Ba[C2(COO)2] · H2O crystallizes in the monoclinic space group P21/a. The lattice constants are a = 753.4(2), b = 921.8(2), c = 881.8(2) pm and β = 102.00(2)°. The crystal structure is characterized by an intricate three-dimensional framework made up by Ba2+ and [C2(COO)2]2? ions. Ba2+ has coordination number 9 and is bound to two water molecules and seven oxygen atoms belonging to carboxylate groups of the dianion. The [C2(COO)2]2? ion does not merely act like a multiple monodentate ligand, but coordinates Ba2+ in a chelate-like manner as well. The carboxylate groups of the dianion are inclined to each other by 65°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号