首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

2.
A New Type of Oxotellurates (VI): Rb6[TeO5] [TeO4] For the first time single crystals of Rb6Te2O9 was obtained by annealing intimate mixtures of the binary oxides (closed Ag-cylinder in supremax-glass ampoule, 680°C, 45 d). The structure elucidation (four-circle diffractometer, AgKα, 2083 I0(hkl); R = 9.5%, Rw = 6.6%) confirms the space group C2/c with a = 1207.5(7), b = 1266.3(5), c = 1105.3(6) pm, β = 123.1(1)0, Z = 4 (Guinier-Simon photographs). Characteristic for this structure are ?isolated”? trigonal bipyramidal groups of [TeO5] and ?isolated”? tetrahedral groups of [TeO4], so we prefere to name the new compound Rb6[TeO5][TeO4]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Fictive Ionic Radii, MEFIR, are calculated and discussed.  相似文献   

3.
Oxidation of Intermetallic Phases CsK2[AuO2] from CsAu+K2O2 We prepared the hitherto unknown CsK2[AuO2] [Heating mixtures of CsAu and K2O2,2; 1:1; gives single crystals (Ag-cylinder, 430°C, 6d)]. The single crystals are light blue, nearly colourless, and transparent. A new type of structure is found. The single crystal data are: Pnma; a = 1256.5(5), b = 727.3(2), c = 627.9(2)pm, Z = 4; four-circle diffractometer PW 1100, MoKα;849 out of 871 I0(hkl), R = 7.3% and Rw = 6.3%. The Madelung Part of Lattice Energy, MAPLE, is calculated.  相似文献   

4.
The First Quaternary Oxide of Monovalent Cobalt: CsK2[CoO2] Dark-red single crystals of CsK2[CoO2] were obtained via ?reaction with the cyliner surface”? by heating powders of Cs2K2Cd3O5 in closed Co-cylinders at 500°C during 48 d. Structure solution and refinement (four-circle diffractometer data, MoKα , 147 independent Io(hkl), none was omitted, R = 3.42%, Rw = 2.24%) show close relationship with RbNa2[NiO2] [2]. The lattice-constants are: (powder data, standard deviations in parentheses) MAPLE calculations, investigations of magnetism and EPR measurement add to the monovalence of Co.  相似文献   

5.
About the Na5[GaO4]-Relationship: KNa4[GaO4] and CsK4[GaO4] KNa4[GaO4] was newly prepared from binary oxides (powders) and also from KGaO2/Na2O/K2O (colourless columnar single crystals) in a closed Ag-cylinder at 600 and 650°C. Space group Pbca with a = 1046.1(2), b = 596.3(1), c = 1871.1(3) pm, Z = 8 [Four-circle-diffractometer data, 1138 I0(hkl), MoKα, R = 8.29, Rw = 6.76%, anisotropic refinement] (Parameter s. text). Colourless cubic single crystals of hitherto unknown CsK4[GaO4] are formed by reaction of K2O, CsGaO2, and Cs2O (surplus) in a closed Au-tube at 580°C. Space group Pbca with a = 1154.7, b = 667.7, c = 2096.6 pm, Z = 8 [Four-circle-diffractometer data, 1798 I0(hkl), MoKα, R = 7.62, Rw = 7.68%, anisotropic refinement] (Parameter s. text). Both crystal structures belong to the Na5[GaO4] type. Structural aspects, ECoN, and MAPLE of KNa4[GaO4] and CsK4[GaO4] in relation with Na5[GaO4] are discussed.  相似文献   

6.
New Oxides with the “Butterfly-Motive”: Rb6[Fe2O5] and K6[Fe2O5] Rb6[Fe2O5] and K6[Fe2O5] were obtained for the first time by annealing intimate mixtures of “Rb6CdO4” with CdO (molar ratio 1 : 1.1) and KO0.48 with CdO (molar ratio 5.9 : 1) respectively in closed Fe-cylinders. Determination and refinement of the crystalstructure confirms the space group C2/m (four-circle-diffractometer data). Rb6[Fe2O5]: Ag Kα , 720 out of 1220 Io(hkl), R = 9.68%, Rw = 6.09%; a = 718.9pm, b = 1183.1 pm, c = 695.4pm, β = 95.05°, Z = 2; K6[Fe2O5]: MoKα , 1214 Out of 12141o(hkl), R = 3.20070, Rw = 2.48%, a = 691.21 pm, b = 1142.78pm, c = 665.50pm, β = 93.82°, Z = 2. The binuclear unit [O2FeOFeO2]6? already known to be planar with oxoferrates(II) now was observed to be angular here and closely related to Na6[Be2O5].  相似文献   

7.
A New Oxoferrate with “Butterfly-Motiv”: K2Na4[Fe2O5] Dark red-brown single-crystals of K2Na4[Fe2O5] were obtained for the first time by heating “K3Na3CdO4” at 500°C in closed Fe-cylinders. Determination and refinement of the crystal structure confirms the space group P42/mnm (No. 136). Four-circle diffractometer data: MoKα , 373 out of 373 Io(hkl); R = 5.3%; Rw = 4.6%; a = 645.94(5), c = 1 039.2(1) pm. In contrast to the already known oxoferrates(II) with the “Butterfly-Motiv”, Rb6[Fe2O5] and K6[Fe2O5] [1], we now found an isotypic structure for K2Na4[Fe2O5] with the oxocobaltates of Rb2Na4[Co2O5] and K2Na4[Co2O5] [2].  相似文献   

8.
A New ?Orthoindate”? of an Alkali Metal: K5[InO4] Hitherto unknown K5[InO4] was prepared by heating intimate mixtures of K2O, In2O3 and elementar In (molar ratio 10.0 : 1.0 : 4.0) in closed Ni-cylinders (30 days, 500°C) in form of pale red, nearly colourless, transparent, single crystals. Same crystals were obtained by heating mixtures of K2O, CdO and elementar In (molar ratio 3.1 : 1.0 : 1.0) in closed Ag-cylinders (30 days, 450°C), too. In this case we also found yellow-brown crystals of K14[In4O13] [1]. Structure determination by four circle diffractometer data (MoKα, 15279 out 17454 Io(hkl), R = 5.60%, Rw = 5.25%). Space group P1 with a = 1827.9 pm; b = 1694.4 pm; c = 1329.4 pm; α = 113.3°; β = 111.4°; γ = 105.2°; Z = 16. Characteristic feature of the structure are isolated [InO4]5?-tetraeder. The Madelung Part of Lattice Energy, MAPLE, the Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and Charge Distribution, VADI, are calculated.  相似文献   

9.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

10.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

11.
On ?Lithovanadates”?: Rb2[LiVO4] and Cs2[LiVO4] By heating of well ground mixtures of the binary oxides [A2O, Li2O, V2O5, A : Li: V = 2.2 : 1.1 : 1.0 (A = Rb, Cs); Ni-tube, 750° 25 d] we obtained Rb2[LiVO4] and Cs2[LiVO4] colourless, orthorhombic single crystals. We found a new type of ?Lithovanadate”?-structure: space group Cmc21; a = 587.9(1), b = 1170.1(1), c = 793.3(1) pm, Z = 4 (A = Rb) bzw. a = 610.5(1), b = 1222.6(3), c = 815.5(2) pm, Z = 4 (A = Cs). The structure was determined by four-circle diffractometer data [MoKα -radiation; 997 from 1157 I0(hkl), R = 7.75%, Rw = 5.54% (A = Rb); 686 from 686 I0(hkl), R = 6.97%, Rw = 4.20% (A = Cs)] parameters see text. The Madelung part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

12.
Pyridinium Chlorometallates of Lanthanoid Elements. Crystal Structures of [HPy]2[LnCl5(Py)] mit Ln = Eu, Er, Yb und von [H(Py)2][YbCl4(Py)2] · Py The pyridinium chlorometallates [HPy]2[LnCl5(Py)] with Ln = Eu, Er and Yb, as well as [H(Py)2][YbCl4(Py)2]·Py have been obtained by the reaction of diacetone alcohol with solutions of the corresponding metal trichlorides in pyridine at 100 °C. According to the crystal structure determinations the anions [LnCl5(Py)]2— are linked by bifurcated Cl···H···Cl bridges with the protons of the [HPy]+ cations forming chains along [001]. The anions of [H(Py)2][YbCl4(Py)2]·Py form discrete octahedrons with trans‐positions of the pyridine ligands. [HPy]2[EuCl5(Py)] ( 1a ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1874.4(2), b = 1490.2(2), c = 741.5(1) pm, R1 = 0.0466. [HPy]2[ErCl5(Py)] ( 1b ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1864.3(1), b = 1480.7(2), c = 739.7(1) pm, R1 = 0.0314. [HPy]2[YbCl5(Py)] ( 1c ): Space group Pnma, Z = 4, lattice dimensions at —80 °C: a = 1858.9(2), b = 1479.0(1), c = 736.8(1) pm, R1 = 0.0306. [H(Py)2][YbCl4(Py)2]·Py ( 2 ·Py): Space group Ia, Z = 4, lattice dimensions at —80 °C: a = 1865.5(1), b = 827.5(1), c = 1873.4(1) pm, ß = 103.97(1)°, R1 = 0.0258.  相似文献   

13.
The First Binuclear Oxoferrate(II): ?Cs2K4[O2FeOFeO2]”? For the first time ?Cs2K4[Fe2O5]”? was obtained by annealing intimate mixtures of Cs2O, K2O, and CsFeO2 (molar ratio Cs : K : CsFeO2 1.3 : 2.1 : 1) in a closed Fe-cylinder (74 d; 470°C) in the form of red single crystals. The structure determination (four-circle diffractometer, MoKα , 760 out of 857 Io(h kl); R = 5.8%, Rw = 4.6%) confirms the space group C2/m; a = 707.4, b = 1138.5, c = 699.7 pm, β = 91.76°, Z = 2. Essential part of the structure is the binuclear, planar [O(1)2Fe? O(2)? FeO(1)2]6? group which is for the first time observed with oxoferrates(II). Despite different space groups the crystal structure is related to that of Rb2Na4[Co2O5].  相似文献   

14.
[PtIn6][GaO4]2 – The First Oxide Containing [PtIn6] Octahedra. Preparation, Characterisation, and Rietveld Refinement – With a Remark to the Solid Solution Series [PtIn6][GaO4]2‐x[InO4]x (0 < x ≤ 1) The novel oxides [PtIn6][GaO4]2–x[InO4]x (0 < x ≤ 1) are formed by heating intimate mixtures of Pt, In, In2O3, and Ga2O3 in the corresponding stoichiometric ratio in corundum crucibles under an atmosphere of argon (1220 K, 70 h). The compounds are black, stable in air at room temperature, reveal a semiconducting behaviour, and decompose only in oxidizing acids. X‐ray powder diffraction patterns can be indexed by assuming a face centered cubic unit cell with lattice parameters ranging from a = 1001.3(1) pm (x = 0) to a = 1009.3(1) pm (x = 1). According to a Rietveld refinement [PtIn6][GaO4]2 crystallizes isotypic to the mineral Pentlandite (Fm3m, Z = 4, R(profile) = 6.11%, R(intensity) = 3.95%). The characteristic building units are isolated [PtIn6]10+ octahedra which are linked via [GaO4]5– tetrahedra to a three dimensional framework. Starting from [PtIn6][GaO4]2 the substitution of Ga3+ ions by larger In3+ ions leads to the formation of a solid solution series according to the general formula [PtIn6][GaO4]2–x[InO4]x and becomes apparent in an increase of the lattice parameter.  相似文献   

15.
Preparation and Crystal Structure of β-[SeCl3][MoOCl4] The reaction of Se4[MoOCl4] and Te4[MoOCl4] with SOCl2 as solvent at 150 °C and 80 °C yields [SeCl3][MoOCl4] and [TeCl3][MoOCl4] respectively within 3 to 6 days as yellow-brown, moisture-sensitive crystals. [TeCl3][MoOCl4] was obtained in the already known monoclinic form, while β-[SeCl3][MoOCl4] crystallizes in a new polymorphic triclinic form (P1¯, Z = 2, a = 752.7(2), b = 812.8(2), c = 956.9(3) pm, α = 92.55(3)°, β = 111.63(2)°, γ = 107.39(3)°). The structure contains centrosymmetric tetranuclear units ([SeCl3]2[Mo2O2Cl8]) which are analogous to the entities found in the structure of [SCl3][MoOCl4]. The packing of the molecules in β-[SeCl3][MoOCl4] and [SCl3][MoOCl4] is distinctely different.  相似文献   

16.
The First Oxothallate(III) with the Formula Type AA4′[MO4]: CsK4[TlO4] For the first time CsK4[TlO4] was obtained by heating intimate mixtures of K2O, CdO and CsTl (molar ratio 3.1:1.0:1.0) in closed Ag-cylinders (25 days, 450°C) in form of yellow, transparent single crystals. The structure determination by four circle diffractometer data (MoKα, 1922 out of 2 094 Io(hkl), R = 2.98, Rw = 2.49) confirms the space group Pbca with lattice constants a = 1 192.1 pm; b = 685.7 pm; c = 2 143.5 pm; Z = 8. The structure is isotypic with Na5[GaO4]. The Madelung Part of Lattice Energy, MAPLE, the Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and Charge Distribution, CHARDI, are calculated.  相似文献   

17.
The First Oxocobaltate(II) with Dinuclear Anion: Rb2Na4[Co2O5] and K2Na4[Co2O5] By heating of well ground mixtures of the binary oxides [A2O, Na2O, ?CoO”?, A:Na:Co = 1.00:2.00:1, (A = K, Rb); Ag-tube, 600°C, 14 d] we obtained Rb2Na4[Co2O5] and K2Na4[Co2O5] rough, transparent, red single crystals. We find a new type of structure with the anion [O2CoOCoO2]6?. Space group P42/mnm; a = 634.4 pm, c = 1030.3 pm, Z = 2 (A = K) a = 647.6 pm, c = 1021.1 pm, Z = 2 (A = Rb); four-circle diffractometer data; MoKα -radiation; 360 from 364 I0(hkl), R = 4.34%, Rw = 3.54% (A = K); 361 from 366 I0(hkl), R = 6.54%, Rw = 2.70% (A = Rb). The anion is planar, the CN of Co is 3. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, are calculated and discussed.  相似文献   

18.
The First Diniobate with ‘Isolated’ Anions: KLi4[NbO5]=K2Li8[Nb2O10] [1] . By heating of well ground mixtures of the binary oxides [K2O, Li2O, Nb2O5, K:Li:Nb=1.1:4.4:1, Pt-tube, 1100°C, 3d] colourless, triclinic single crystals of KLi4NbO5 have been prepared for the first time: space group P1 (Nr. 2) with a=816.9(2) pm, b=592.2(2) pm, c=589.7(2) pm, α=121.00(2)º, β=91.78(2)°, γ=99.23(2)°, Z=2. The crystal structure was solved by four-cycle diffractometer data [Mo-Kα , 1386 from 1386 Io(hkl), R=3.4%, Rw=2.6%], parameters see text. Characteristic for this structure are “isolated” groups of [Nb2O10] and the tetrahedral coordination of Li(1), Li(2), and Li(3). Li(4) has a tetragonal-pyramidal coordination. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, the Effective Coordination Numbers, ECoN and the charge distribution have been calculated and discussed.  相似文献   

19.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

20.
Synthesis, Crystal Structures, and Absorption Spectra of the New “Cupriosilicates”: K6[CuSi2O8] and Rb4[CuSi2O7] K6[CuSi2O8] and Rb4[CuSi2O7] were obtained by annealing intimate mixtures of K2O and Rb2O, respectively, CuO and SiO2 in sealed Ag cylinders at 500°C as transparent greenish-blue single crystals. The structure solution (IPDS-data Mo Kα; K6[CuSi2O8]: 1292 F2(hkl), R1 = 0.059; wR2 = 0.103 and Rb4[CuSi2O7]: 763 F2(hkl), R1 = 0.049; wR2 = 0.114) confirms the space group P1 for both compounds. K6[CuSi2O8]: a = 619.4(2); b = 665.5(2); c = 753.0(2) pm; α = 83.66(3); β = 87.71(3); γ = 70.19(3)°; Z = 1. Rb4[CuSi2O7]: a = 631.9(9); b = 707.5(10); c = 715.2(6) pm; α = 114.2(1); β = 100.7(1); γ = 107.9(1)°; Z = 1. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these calculated via Mean Effective Ionic Radii, MEFIR, are given. The absorption spectra of K6[CuSi2O8] and Rb4[CuSi2O7] are discussed in terms of the Angular Overlap Model, AOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号