首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixtures of 50% tetramethylsilane (TMS) and methane have been found to give [M+73]+ adduct ions and structurally useful fragment ions for many oxygen- and nitrogen-containing organic compounds. All of the reagent ions in TMS react with polar compounds. The high-pressure TMS chemical ionization spectra of many simple oxygenated compounds are in agreement with predictions from ion chemistry of (CH3)3Si+ obtained by ion cyclotron resonance experiments at very low pressures, but differences are noted. Sensitivities for oxygen-, nitrogen-, and sulfur-containing compounds with TMS as the reagent gas appear to be approximately the same.  相似文献   

2.
Geometrically isomeric dicarboxylic acids, such as maleic and fumaric acid and their methyl homologues, and the isomeric phthalic acids, have been investigated using fast atom bombardment, field ionization and field desorption mass spectrometry. The most intense peak in the positive ion fast atom bombardment spectra corresponds with the [M + H]+ ion. This ion, when derived from the E -acids, tragments either by successive loss of water and carbon monoxide or by elimination of carbon dioxide. In the case of the Z -acids only elimination of water from the [M + H]+ ions is observed to occur to a significant extent. The same is true for the [M + H]+ ions of the isomeric phthalic acids, that is the [M + H] ions derived from iso- and terephthalic acid exhibit more fragmentation than those of phthalic acid. All these acids undergo much less fragmentation upon field ionization, where not only abundant [M + H]+ ions, but also abundant [M] ions, are observed. Upon field desorption only the [M + H]+ and [M + Na]+ ions are observed under the measuring conditions. Negative ion fast atom bombardment spectra of the acids mentioned have also been recorded. In addition to the most abundant [M? H]? ions relatively intense peaks are observed, which correspond with the [M]?˙ ions. The fragmentations observed for these ions appear to be quite different from those reported in an earlier electron impact study and in a recent atmospheric pressure ionization investigation.  相似文献   

3.
The H2 and CH4, chemical ionization mass spectra of the cis dicarboxylic acids, maleic and citraconic acid, show much more extensive loss of H2O from [MH]+ than the trans isomers, fumaric acid and mesaconic acid. Similarly, esters of maleic acid show a much more facile loss of ROH (R=alkyl or phenyl) from [MH]+ than do esters of fumaric acid. Similar differences are observed in the chemical ionization mass spectra of the isomeric phthalic and isophthalic acids and derivatives, where the ortho isomers show more extensive fragmentation of [MH]+ than the meta isomers. The facile fragmentation of [MH]+ for the cis and ortho isomers is attributed to ROH elimination involving interaction between the two carboxylate functions and forming the stable cyclic anhydride structure for the fragment ion. By contrast ROH elimination from [MH]+ for the trans and metu isomers requires a symmetry-forbidden [1,3]-H migration in the carboxyl protonated species and cannot lead to the cyclic anhydride structure. The chemical ionization mass spectra of cis and trans cyclohexane-1,2-dicarboxylic acids are essentially identical and show extensive fragmentation of the [IMH]+ ion. Experiments using deuterium labelling show extensive carboxyl group interactions for both isomers. The chemical ionization mass spectra of maleanilic and phthalanilic acids and of the related anhydrides and imides also are reported, as are the electron impact mass spectra of diphenyl maleate, diphenyl fumarate, diphenyl phthalate, maleanilic acid and phthalanilic acid.  相似文献   

4.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

5.
Mixtures of tetramethylsilane and helium have been found to form [M + 73]+ adducts, hydrated trimethylsilyl ions and alkyl ions with aliphatic alcohols. The adduct ions were found to be formed by displacement of water from the hydrated trimethylsilyl ion. Ratios of the abundances of the adduct ions to the hydrated trimethylsilyl ion can be used to differentiate among primary, secondary and tertiary alcohols. Sensitivities for a number of alcohols with the tetramethylsilane/helium chemical ionization reagent system are approximately equal.  相似文献   

6.
The chemical ionization mass spectra of different dicarboxylic acids, including saturated and unsaturated aliphatic, aromatic, hydroxyl and amino-substituted dicarboxylic acids, have been studied using pure methanol as the reagent gas. Biomolecular monoesterification and diesterification product ions [M+15]+ and [M+29]+, and adduct ion [M+33]+, were observed, in addition to the protonated molecule [MH]+ and unimolecular water elimination product ions. The formation of a protonated molecule with bridged intramolecular hydrogen bond, and its effect on the esterification of dicarboxylic acids is discussed. Geometric isomers, such as maleic and fumaric acid, and ortho and meta isomers of phthalic acids can be distinguished from each other by methanol chemical ionization mass spectra. When ethanol was used as the reagent gas, similar mass spectra of some dicarboxylic acids were obtained.  相似文献   

7.
A series of isomeric substituted diaryl ethers, i.e., 2- or 4-NO2, 5- FC6H3OC6H4 (4-R), where R=H, COCH3, COOCH3, NO2, CHO, OCH3 etc., which comprise ortho and para isomers with respect to the position of the nitro group are studied under GC-EI-MS and CI-MS conditions. The EI mass spectra of ortho and para isomers show distinct fragment ions, where the [MOH]+ and [MOHO]+ ions specifically appeared in all spectra of the ortho isomers (I), whereas the para isomers (II) contain [MO]+ and [MNO]+ ions. The [MOHCO]+ and [MOHNO]+ ions in I, and [MNO2]+ ion in II are the other specific fragment ions observed but feasibility of these fragment ions are found to depend on the nature of the substituent (R). The substitution (R) effect is also clearly reflected in the formation of fragment ions due to sigma-cleavage process with or without hydrogen migration. Similar differences in the formation of specific fragment ions are also observed in ortho and para isomers of substituted aryl naphthyl ethers. The methane/CI of isomeric compounds resulted in the same set of fragment ions, but prominent differences are observed in the relative abundance of [MHNO]+, which is relatively higher in para isomers compared with corresponding ortho isomer.  相似文献   

8.
Chemical ionization mass spectra of dicarboxylic acids and methyl esters show fragmentation and unimolecular reactions with reagent gases water, methanol, ammonia and methyl ether, which differ from those observed with hydrocarbon reagents methane and isobutane. These reactions involve exchange of the reagent gas for water or methanol of the dicarboxyl compounds as well as secondary exchange of both functions. An effort has been made to determine the mechanism of these reactions and to determine the structural requirements necessary for their occurrence.  相似文献   

9.
Summary Negative ion mass spectra for 3 aliphatic and 4 aromatic isocyanates have been obtained by low pressure chemical ionization, using CH4, CO2 and N2O as reagent gases. All compounds furnished intense anions at m/z 42. With CH4, quasi-molecular anions were observed at m/z M+1 for aliphatic and m/z M+1 and M–1 for aromatic isocyanates. With N2O, anionic substitution products at m/z M+15 and M+30 were observed, and with CO2 and N2O, peaks at m/z M–12 could be detected for all aromatic isocyanates. Studies with 13CO2 and C18O2 as reagent gases showed that the anions at m/z M–12 and M+15 correspond to [M–CO+O] and [M–H+O], respectively.
Negativionen-Massenspektrometrie mit chemischer Ionisierung von einigen Isocyanaten
Zusammenfassung Die Negativionen-Massenspektren von 3 aliphatischen und 4 aromatischen Isocyanaten wurden mittels chemischer Ionisation bei tiefem Quellendruck aufgenommen, und zwar mit den Reagensgasen CH4, CO4 und N2O. Alle Verbindungen lieferten intensive Anionen mit m/z 42. Mit CH4 erhielten wir die quasi-molekularen Anionen M+1 für aliphatische sowie M+1 und M–1 für aromatische Isocyanate. Das Reagens N2O ergab die anionischen Substitutionsprodukte M+15 und M+30. Sowohl CO2 als auch N2O führten mit aromatischen Isocyanaten zur Bildung von M–12 Anionen. Versuche mit 13CO2 und mit C18O2 als Reagensgase zeigten, daß die Anionen M–12 und M+15 den Ionen [M–CO+O] und [M–H+O] entsprechen.
  相似文献   

10.
Formation of ions in chemical ionization mass spectrometry of flavonoid compounds has been studied. Production of adduct ions and fragment ions as a function of ring substituents and of reagent gas has been observed. Pressure and repeller field dependence of ions has been found as a function of ring substituents.  相似文献   

11.
Electron impact mass spectra at 70 eV electron energy and chemical ionization mass spectra with ammonia as the reagent gas are reported for certain unsaturated C-glycosides. Comparisons are made between the mass spectra of anomeric pairs of these glycosides.  相似文献   

12.
Chemical ionization mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments have been performed for the structural characterization and isomeric differentiation of two series of C- and O-linked arylglycosides with potential antioxidant activity. Different amines have been used for producing gas phase chemical ionization. Depending on their proton affinity and steric hindrance, adduct ions with different stability are formed. The most stable adducts are produced by ethylamine and they have been extensively structurally characterized by experimental and theoretical approaches. Energy resolved chemical ionization tandem mass spectrometric experiments have allowed unambiguous characterization and differentiation of both the anomers differing at the configuration of the glycosidic C(1) atom, and regio- and structural isomers at extremely low concentrations, typical of mass spectrometry. This study has shown that amine chemical ionization mass spectrometry and MS/MS are powerful and versatile tools for the structural characterization of arylglycosides.  相似文献   

13.
14.
The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization.  相似文献   

15.
16.
17.
18.
Analysis of the isobutane chemical ionization mass spectra of hexenols, cyclohexenols and various syn/anti pairs of bicyclic and tricyclic homoallylic alcohols shows that: (i) the spectra of the allylic alcohols are dominated by [M + H – H2O]+ and [M + C4H9–H2O]+ ions and contain traces of [M + H]+ ions; (ii) [M + H]+ ions are prominent in the spectra of acyclic and certain cyclic homoallylic alcohols; and (iii) [M + H]+ ions dominate the spectra of other acyclic unsaturated alcohols. The [M + H]+ ions may result from either: (a) protonation of the hydroxyl group, followed by a very rapid intramolecular proton transfer from the protonated hydroxyl group to the carbon–carbon double bond or internal solvation of the protonated hydroxyl group by the carbon–carbon double bond; and/or (b) direct protonation of the carbon–carbon double bond with significant internal solvation of the resulting carbocation by the hydroxyl group, which may lead to carbon–oxygen bond formation to give a protonated cyclic ether. The consequences of placing various geometric constraints on the possible intramolecular interactions between the hydroxyl group and the carbon–carbon double bond in unsaturated alcohols are explored.  相似文献   

19.
Ammonia, isobutane and methane chemical ionization mass spectra have been measured for some substituted cis-1,3-cyclopentane dicarboxylic acids and their derivatives. The relative proton affinities of the different functional groups determine the protonation site in the molecule and thereby greatly affect the fragmentation. Intramolecular catalysis clearly facilitates the elimination of water in cases where functional groups can interact with each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号