首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new set of free-base and zinc(II)-metallated, β-pyrrole-functionalized unsymmetrical push–pull porphyrins were designed and synthesized via β-mono- and dibrominated tetraphenylporphyrins using Sonogashira cross-coupling reactions. The ability of donors and acceptors on the push–pull porphyrins to produce high-potential charge separated states was investigated. The porphyrins were functionalized at the opposite β,β′-pyrrole positions of porphyrin ring bearing triphenylamine push groups and naphthalimide pull groups. Systematic studies involving optical absorption, steady-state and time-resolved emission revealed existence of intramolecular type interactions both in the ground and excited states. The push–pull nature of the molecular systems was supported by frontier orbitals generated on optimized structures, wherein delocalization of HOMO over the push group and LUMO over the pull group connecting the porphyrin π-system was witnessed. Electrochemical studies were performed to visualize the effect of push and pull groups on the overall redox potentials of the porphyrins. Spectroelectrochemical studies combined with frontier orbitals helped in characterizing the one-electron oxidized and reduced porphyrins. Finally, by performing transient absorption studies in polar benzonitrile, the ability of push–pull porphyrins to produce charge-separated states upon photoexcitation was confirmed and the measured rates were in the range of 109 s−1. The lifetime of the final charge separated state was around 5 ns. This study ascertains the importance of push–pull porphyrins in solar energy conversion and diverse optoelectronic applications, for which high-potential charge-separated states are warranted.  相似文献   

2.
Twelve push–pull ethylene derivatives, NH2CH=CHX, NH2C≡CCH=CHX, and OCHX=CHX (with X=BH2, C≡N, NO2, and CH2 +) have been studied by ab initio calculations. The rotational barrier around the central double bond was chosen as a probe for push–pull effects, as push–pull effects would remove electron density from the central double bond. The amount of reduction of double bond character will increase with the contribution of the zwitterionic resonance hybrid structure. Complete geometry optimizations and calculations of vibrational frequencies were performed for all minima and transition state structures of these 12 systems. The calculations were carried out with the B3LYP and MP2 methods using the 6-311+G(d,p) and the 6-311++G(d,p) basis sets. All the systems investigated exhibited properties consistent with push–pull effects such as elongated C=C double bonds, dipolar electronic structures, and reduced barriers to internal rotation.  相似文献   

3.
Density functional theory (B3LYP, B3LYP-D3, wB97XD, M062X, and M06L) and ab initio methods (MP2 and CCSD(T)) in conjunction with 6-31+G(d,p) and LanL2DZ were employed to investigate the interaction energies between [Co(NH3)5NO2]2+ linkage isomers and chloride and nitrate in both gas phase and solid state. The nature of the chemical bonding has been analyzed by means of the atoms in molecules, electron density shift, natural bond orbitals, symmetry adapted perturbation theory, and energy decomposition analysis. The electronic structures of the two lowest laying singlet states (So and S1) of [Co(NH3)5NO2](NO3)Cl isomers were also investigated using CASSCF(6,6) with LanL2DZ and 6-31G(d) basis sets. Our results show that [Co(NH3)5NO2]2+ linkage isomers interact more strongly with chloride than nitrate. The structures of [Co(NH3)5NO2](NO3)Cl linkage isomers and their relative stabilities were examined in gas phase and in solid state and confirmed the nitro-complex as the most stable following by a viable intermediate endo-complex. Study of the nitro-nitrito linkage isomerization in [Co(NH3)5NO2](NO3)Cl revealed that anions form strong electrostatic bonds with [Co(NH3)5NO2]2+ leading to decrease in an activation energy compared to the [Co(NH3)5ONO]2+ isomers. A concerted action of ionic interactions and hydrogen bonds are suspected of regulating the isomerization in solid state. Assessment of various DFT methods with respect to CCSD(T) suggests M062X suitable method for [Co(NH3)5NO2](NO3)Cl linkage-isomerization study. Potential energy surface calculations at the CASSCF/6-31G(d) level of theory shows that the conical intersection (S1/So) might play an important role in the photoisomerization of [Co(NH3)5NO2](NO3)Cl.  相似文献   

4.
Precise measurements of the electrical conductances of solutions of potassium thiocyanate (KCNS), ammonium thiocyanate (NH4CNS), sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) in 2-ethoxyethanol (EE) at temperatures 35, 40, 45 and 50,C are reported. The conductance data have been analyzed by the 1978 Fuoss conductance equation. A thermodynamic analysis of the ionic association processes has also been made and the Coulombic forces are found to play a major role in the association processes. The ionic contributions to the limiting equivalent conductances have been determined using the reference electrolyte method. Strong association was found for all these electrolytes in this solvent medium. The cations are found to be substantially solvated in 2-ethoxyethanol, whereas the anions appear to have only weak interaction with the solvent molecules.  相似文献   

5.
13C nuclear magnetic resonance spectra were collected for a series of 5- and 6-monoaromatic ring-substituted benzonorbornadienes and 5-, 6-, 7-, and 8-monosubstituted benzonorbornen-2-ones. 13C chemical shifts values were found to be useful in the differentiation of the four monosubstituted aromatic ring isomers of benzonorbornen-2-one (1). We found that the 13C NMR spectrum of a substituted benzonorbornen-2-one (A) could be predicted with good accuracy (R2 for each aromatic carbon ≥ 0.925) from a knowledge of the 13C NMR spectrum of 1 and the appropriately substituted benzene. The substituents studied were NO2, NH2, I, CF3, CN, OCH3, and H. Correlation analysis showed that the carbonyl in A was effectively insulated from the ring π-system.  相似文献   

6.
Fluorine Kα X-ray emission spectra have been measured and interpreted using UV photoelectron and X-ray photoelectron spectral data and the results of quantum-chemical calculations, for a series of fluorine-containing organic molecules: CH3F, n-C5F12, polytetrafluoroethylene, tetrafluoroethylene, 4-XC6H4F (X = H, F, NH2, NO2), 1,3-difluorobenzene, 1,2,4,5-tetrafluorobenzene, 1,4-difluorobenzene, C6F5X (X = H, F, SCH3, OCH3, CN, NO2, C6F5, P(OCH3)2), pentafluoropyridine, octafluoronaphthalene and 2,4-dinitrofluorobenzene, all in solid or gaseous states. It has been concluded that the fluorine 2pAO contribution to the highest occupied π-orbitals of the benzene ring and π-orbital of the ethylene bond is small: it is somewhat higher for a system of lower-lying π-orbitals and the highest for σ-orbitals. CH3F is assumed to have hyperconjugation.  相似文献   

7.
Low‐lying excited electronic states of an important class of molecules known as push–pull chromophores are central to understanding their potential nonlinear optical properties. Here we report that a combination of high‐sensitivity nanosecond time‐resolved dispersive IR spectroscopy and DFT calculations on p‐nitroaniline (PNA), a prototypical push–pull molecule, reveals that PNA in the lowest excited triplet state has a partial quinoid structure. In this structure, the quinoid configuration is restricted to a part of the phenyl ring adjacent to the NO2 group. The partial quinoid structure of PNA cannot be explained by a commonly used hybrid of a neutral form and a zwitterionic charge‐transfer form. Our findings not only cast doubt on the general applicability of the classical way of looking at excited states, based exclusively on characteristic resonance structures, but also provide deeper insights into excited‐state structure of highly polarizable molecular systems.  相似文献   

8.
The thermodynamic properties of the mixed aqueous electrolyte of ammonium and alkaline earth metal nitrates have been studied using the hygrometric method at 25?°C. The water activities of these {yNH4NO3+(1?y)Y(NO3)2}(aq) systems with Y ≡ Ba2+, Mg2+ and Ca2+ were measured at total molalities ranging from 0.10 mol?kg?1 to saturation for different NH4NO3 ionic-strength fractions of y=0.20, 0.50 and 0.80. These data allow the calculation of osmotic coefficients. From these measurements, the ionic mixing parameters are determined and used to calculate the solute activity coefficients in the mixtures at different ionic-strength fractions. The results of these ternary solution measurements are compared with those for binary solutions of the alkaline earth nitrates of magnesium, calcium and barium with ammonium nitrates. The behavior of the aqueous electrolyte solutions containing mixtures of barium or calcium or magnesium with ammonium nitrates are correlated and show that ionic interactions are more important for the system containing Mg2+ than for Ca2+ or Ba2+. The trends are mainly due to the effects of the ionic size, polarizability and the hydration of the ions in these solutions.  相似文献   

9.
A series of highly active ethylene polymerization catalysts based on bidendate α‐diimine ligands coordinated to nickel are reported. The ligands are prepared via the condensation of bulky ortho‐substituted anilines bearing remote push–pull substituents with acenaphthenequinone, and the precatalysts are prepared via coordination of these ligands to (DME)NiBr2 (DME = 1,2‐dimethoxyethane) to form complexes having general formula [ZN = C(An)‐C(An) = NZ]NiBr2 [Z = (4‐NH2‐3,5‐C6H2R2)2CH(4‐C6H4Y); An, acenaphthene quinone; R, Me, Et, iPr; Y = H, NO2, OCH3]. When activated with methylaluminoxane (MAO) or common alkyl aluminiums such as ethyl aluminium sesquichloride (EAS) all catalysts polymerize ethylene with activities exceeding 107 g‐PE/ mol‐Ni h atm at 30 °C and atmospheric pressure. Among the cocatalysts used EAS records the best activity. Effects of remote substituents on ethylene polymerization activity are also investigated. The change in potential of metal center induced by remote substituents, as evidenced by cyclic voltammetric measurements, influences the polymerization activity. UV–visible spectroscopic data have specified the important role of cocatalyst in the stabilization of nickel‐based active species. A tentative interpretation based on the formation of active and dormant species has been discussed. The resulting polyethylene was characterized by high molecular weight and relatively broad molecular weight distribution, and their microstructure varied with the structure of catalyst and cocatalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1066–1082, 2008  相似文献   

10.
The literature known, but not fully characterized, silver dinitramide transfer reagents AgN(NO2)2 ( 1 ), [Ag(NCCH3)][N(NO2)2] ( 2 ), and [Ag(py)2][N(NO2)2] ( 3 ) have been investigated by 109Ag, 14N NMR and vibrational spectroscopy (IR, Raman). In addition, the poorly understood [Cu(NH3)4][N(NO2)2)]2 ( 4 ) and [Pd(NH3)4][N(NO2)2]2, ( 5 ) have also been prepared and characterized by 14N NMR and vibrational spectroscopy (IR, Raman). The structures of 2 — 5 have also been determined by X‐ray diffraction.  相似文献   

11.
As part of a series of investigations of molecules with large numbers of nitro groups, the structures and properties of nitroformic acid, NO2CO2H, nitroformyl nitrate, NO2C(O)ONO2, and the ion pair ammonium nitroformate, NH4NO2CO2, have been determined using GX theories (X = 2, 3, 4). Minimum-energy structures, vibrational frequencies, selected bond energies, and enthalpies of formation were determined. The title substances may not have much application as high energy materials like other high-nitro compounds, but they may act as good nitrating agents since certain bonds in the molecules are of low enough energy to suggest high reactivity.  相似文献   

12.
Atomic charges, as measured by Atoms in Molecule (AIM) or Natural Population Analyses (NPA), of the enolate anions of acetaldehyde and crotonaldehyde and of pentadienyl anion and cation show both charge transfer and polarization effects. In general, normal resonance structures and "curved arrow" symbolism give good representations of π-electron distributions, but back-polarizations in the σ-system complicate these electronic structures and can obscure the correspondence to resonance symbols. Twisting a vinyl group to orthogonality disrupts the π-system, but the vinyl group retains significant charge transfers and polarizations. The role of polarization is also demonstrated by the effect of external positive and negative charges on the electronic structure of ethylene. The π-electronic changes again are straightforward but are changed significantly by σ-polarizations. The polarizability of ethane is about half that of ethylene.  相似文献   

13.
New efficient push–pull organic semiconductors comprising of the bis(9,9-dimethyl-9H-fluoren-2-yl)aniline (bisDMFA) donor and the various acceptors such as NO2, DCBP, and TCF, which were linked with bithiophene or vinyl bithiophene π-conjugation bridges, were synthesized, and their photovoltaic characteristics were investigated in solution-processed small molecule organic solar cells (SMOSCs). The intramolecular charge transfers of these materials were effectively appeared in between bisDMFA donor and acceptors, depending on the electron-withdrawing strength of acceptors. The organic semiconductors having NO2 and DCBP acceptors exhibited the most efficient photovoltaic performance, showing power conversion efficiency (PCE) of 1.98% (±0.17) and 2.01% (±0.21), respectively. When the TiOx thin layer was treated on photoactive layer, the organic semiconductor having NO2 showed the best PCE of 2.70% with short circuit current of 8.19 mA/cm2, fill factor of 0.40, and open circuit voltage of 0.83 V in SMOSC devices.  相似文献   

14.
The reaction of ceric ammonium nitrate, (NH4)2[Ce(NO3)6] or CAN, with naphthalene and 2-methylnaphthalene in the ionic liquid 1-ethyl-3-methylimidazolium triflate showed that the reaction products are strongly dependent on the water content of the ionic liquid and that cerium(IV) in the ionic liquid can electrochemically be regenerated.  相似文献   

15.
Density functional theory method with full geometry optimization was used to study the adsorption of nitroamine (NH2NO2) on Al13 cluster. Both dissociative and nondissociative adsorption structures were predicted with different NH2NO2 molecule orientations on Al13 cluster surfaces. In dissociative chemisorption, the main decomposition products of NH2NO2 are O atom(s) and NH2NO or NH2N species. The O atoms being ruptured from the N?CO bond form strong Al?CO bonds with the neighboring Al around the adsorbed sites. In addition, the species obtained as a result of O atom elimination remains bonded to the surface. The largest adsorption energy is ?737.66?kJ/mol when the NH2NO2 molecule decomposes into two O atoms and a NH2N fragment. For nondissociative adsorption, the seriously deformed nitroamine forms various N?CO?CAl bonding configurations with Al. The significant charge transfer occurs for all adsorption configurations. The most charge transfer is 2.068 e from the Al cluster surface to the fragments of the decomposed NH2NO2. The change of the electronic structures is obvious due to the adsorption or dissociation of NH2NO2 molecule. Nitroamine readily oxidizes the aluminum surface of the Al13 cluster.  相似文献   

16.
Compounds [Co(NH3)5NO2][Pd(NO2)4] (I) and [Co(NH3)5NO2][Pt(NO2)4] · 1.5H2O (II) have been crystallized from solution. Their crystal structures have been solved, and thermolysis under various conditions studied. The thermolysis products are Co0.5M0.5 ordered solid solutions.  相似文献   

17.
Acrylamide complexes of metal nitrates: [M(O‐OC(NH2)CHCH2)n(H2O)m][NO3]2 (M = Co( 1 ), Ni( 2 ) (n = 6 and m = 0) and Zn( 3 ) (n = 4 and m = 2)) have been determined by using single crystal X‐ray diffraction analysis. All complexes crystallize in the triclinic space group . The structures of 1 and 2 represent octahedral species [M(AAm)6]2+ (AAm = O‐OC(NH2)CHCH2 and M = Co or Ni) and uncoordinated nitrate ions. The structure of 3 involves the octahedral cation [Zn(AAm)4(H2O)2]2+ in which the Zn2+ environment includes oxygen atoms of four acrylamide and two water molecules that are stabilized using ionic nitrate ions. The observations of the solid‐state IR spectroscopic vibrational frequencies of these acrylamide complexes are in agreement with the crystal structures.  相似文献   

18.
The molecular structure of 1‐methylpyrrolidine‐2,5‐dione, C5H7NO2, corresponds to the dicarbonyl tautomer with an envelope ring conformation. The packing is stabilized by weak intermolecular hydrogen bonds and presents push–pull nucleophile–electrophile interactions of the carbonyl groups.  相似文献   

19.
An experimental DICD (dispersion-induced circular dichroism) and parallel normal absorption study of the lowest n → π* transition of the carbonyl chromophore in simple carbonyls of the form R1R2CO for the isoelectronic substituent series Ri = −CH3, −OH and −NH2 is presented. The results indicate that, contrary to conventional expectations, the energetic position of the transition is progressively shifted to lower energy for the above substituent ordering. The weakness of the absorption bands in acetic acid and urea provides a rationale for why these bands have not been previously reported. The results suggest that the relative shift is ascribable to resonance (through space) coupling between the substituent and the carbonyl π-system.  相似文献   

20.
The structure of double complex salts [Pd(NH3)3(NO2)][Rh(NH3)2(NO2)4] and [PdEn2][Rh(NH3)(NO2)5]·0.75H2O is determined by single crystal X-ray diffraction. In the structures, the main structural moieties are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号