首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of the electronic Schrodinger equation or its calculating algorithm from 4N‐dimensions to a (nonlinear, approximate) density functional of three spatial dimension one‐electron density for an N‐electron system, which is tractable in the practice, is a long desired goal in electronic structure calculation. If the Thomas‐Fermi kinetic energy (~∫ρ5/3d r 1) and Parr electron–electron repulsion energy (~∫ρ4/3d r 1) main‐term functionals are accepted, and they should, the later described, compact one‐electron density approximation for calculating ground state electronic energy from the 2nd Hohenberg–Kohn theorem is also noticeable, because it is a certain consequence of the aforementioned two basic functionals. Its two parameters have been fitted to neutral and ionic atoms, which are transferable to molecules when one uses it for estimating ground‐state electronic energy. The convergence is proportional to the number of nuclei (M) needing low disc space usage and numerical integration. Its properties are discussed and compared with known ab initio methods, and for energy differences (here atomic ionization potentials) it is comparable or sometimes gives better result than those. It does not reach the chemical accuracy for total electronic energy, but beside its amusing simplicity, it is interesting in theoretical point of view, and can serve as generator function for more accurate one‐electron density models. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

2.
From the general formalism of elastic x-ray scattering and a few meaningful assumptions we have shown that for an atom, ∫ρ2dτ is an experimentally measurable quantity related to the intensity scattered by an element. We have labeled this quantity (p), the “average electron density.” If ψ obeys the virial theorem, within the Thomas–Fermi approximation we show (within a multiplicative constant) that 〈ρ〉 is a lower bound to (∑ ionization potentials )3/2. Thus, the scattered intensity of x rays is related quantitatively to the energy of the scattering atoms. Inequalities have been developed to express these relationships and have been confirmed for the more exact Hartree–Fock wave functions.  相似文献   

3.
We prove the following results, relevant for the density functional theory: the Thomas–Fermi–Dirac theory, generalized to include the contribution due to the high electron density result of Gell-Mann and Brueckner for the correlation energy, is shown to lead to a differential equation for the self-consistent ground-state density n( r ) in atoms and molecules in the form F(n, { ∇ n/n}2, ∇2n/n)=1, where the function F is given explicitly. A straightforward extension yields a similar result for the equation determining the Pauli plus exchange–correlation potential and for the divergence of the many-electron force. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 145–149, 1998  相似文献   

4.
The aim of this note is to ascertain the importance of the Fermi–Amaldi (FA ) correction for the Thomas–Fermi (TF ) theory of atoms. For this purpose, an analytic trial electron density has been chosen and the Thomas–Fermi–Amaldi (TFA ) energy expression has been minimized by the Ritz method for the closed-shell atoms Ne, Ar, Kr, Xe, and Rn. The variationally obtained electron densities have then been used for calculating the diamagnetic susceptibilities of these atoms. The calculated values show only a very small improvement over values calculated by Jensen by an analogous procedure from the TF energy expression.  相似文献   

5.
The nature of the correlation function G(1,2) appearing in the definition of the reduced first order density operator γ′(1,2) = ρ(1)1/2ρ(2)1/2G(1,2) is analyzed. It is shown that when G(1,2) is expanded in terms of plane waves in the context of a single-determinant approximation to the wave function, the correction to the Weizsacker term in the kinetic energy density expression is the Thomas–Fermi term.  相似文献   

6.
The rate constant for the reactions of atomic chlorine with 1,4‐dioxane (k1), cyclohexane (k2), cyclohexane‐d12(k3), and n‐octane (k4) has been determined at 240–340 K using the relative rate/discharge fast flow/mass spectrometer (RR/DF/MS) technique developed in our laboratory. Essentially, no temperature dependence for these reactions was observed over this temperature range, with an average of k1 = (1.91 ± 0.20) × 10?10 cm3 molecule?1 s?1, k2 = (2.91 ± 0.31) × 10?10 cm3 molecule?1 s?1, k3 = (2.73 ± 0.30) × 10?10 cm3 molecule?1 s?1, and k4 = (3.22 ± 0.36) × 10?10 cm3 molecule?1 s?1, respectively. The kinetic isotope effect of the reaction of cyclohexane with atomic chlorine has also been determined to be 1.14 by directly monitoring the decay of both cyclohexane and cyclohexane‐d12 in the presence of chlorine atoms, which is consistent with the literature value of 1.20. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 386–398, 2006  相似文献   

7.
In the present work the total energy of a Ne atom at T = 0 K is calculated as a function of a spherical container radius. The calculation is based on the Thomas–Fermi (TF ) equation, which is solved approximately by an equivalent variational principle. The effect of an approximate exchange correction on the variational TF energy values is investigated.  相似文献   

8.
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO‐coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen‐core approximations for Lu were compared: the (1s2–4d10) [Pd] medium core, the [Pd+5s25p6 = Xe] and [Pd+4f14] large cores, and the [Pd+4f14+5s25p6] very large core. The errors of Lu? X bonding are more serious on freezing the 5p6 shell than the 4f14 shell, more serious upon core‐freezing than on the effective‐core‐potential approximation. The Ln? X distances correlate linearly with the AO radii of the ionic outer shells, Ln3+‐5p6 and X?np6, characteristic for dominantly ionic Ln3+‐X? binding. The heavier halogen atoms also bind covalently with the Ln‐5d shell. Scalar relativistic effects contract and destabilize the Lu? X bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re, bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re~BE~kvs). The so‐called degeneracy‐driven covalence, meaning strong mixing of accidentally near‐degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The Boltzmann–Shannon (BS ) information entropy Sρ = ∫ ρ(r)log ρ(r)dr measures the spread or extent of the one-electron density ρ(r), which is the basic variable of the density function theory of the many electron systems. This quantity cannot be analytically computed, not even for simple quantum mechanical systems such as, e.g., the harmonic oscillator (HO ) and the hydrogen atom (HA ) in arbitrary excited states. Here, we first review (i) the present knowledge and open problems in the analytical determination of the BS entropies for the HO and HA systems in both position and momentum spaces and (ii) the known rigorous lower and upper bounds to the position and momentum BS entropies of many-electron systems in terms of the radial expectation values in the corresponding space. Then, we find general inequalities which relate the BS entropies and various density functionals. Particular cases of these results are rigorous relationships of the BS entropies and some relevant density functionals (e.g., the Thomas–Fermi kinetic energy, the Dirac–Slater exchange energy, the average electron density) for finite many-electron systems. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The simplest nonrelativistic density functional theory, namely, that of Thomas, Fermi, and Dirac, is used to study the effect of exchange on the equilibrium bond lengths of heavy tetrahedral molecules XH4. In particular, the limiting bond length as the central atom X becomes infinitely heavy is shown to be reduced by exchange by some 0.34 Å. Comparison with experiment shows that the main features of the bond-length variation through the series CH4? PbH4 are reflected by the Thomas–Fermi–Dirac predictions, though the bond lengths remain too large for finite atomic number Z of the central atom. Therefore, a semiempirical correction is proposed, which, however, tends to zero as Z tends to infinity.  相似文献   

11.
A temperature correction to the Thomas–Fermi (TF ) model of a neutral compressed atom has been given by Marshak and Bethe. The aim of the present work is to point out that, by formulating a variational principle, one may obtain approximate analytical solutions of the temperature-perturbed TF equation. As a test of the proposed theory, the total energy of a Ne atom, confined to a spherical container, has been calculated as a function of the container radius at T = 0°K. Comparison of the data obtained with energy values calculated by Ludeña, using a self-consistent-field Hartree–Fock approach, shows reasonable agreement. It is, therefore, concluded that the variational approach suggested in this paper is a sound one.  相似文献   

12.
At bromide concentrations higher than 0.1 M, a second term must be added to the classical rate law of the bromate–bromide reaction that becomes ?d[BrO3?]/dt = [BrO3?][H+]2(k1[Br?] + k2[Br?]2). In perchloric solutions at 25°C, k1 = 2.18 dm3 mol?3 s?1 and k2 = 0.65 dm4 mol?4 s?1 at 1 M ionic strength and k1 = 2.60 dm3 mol3 s?1and k2 = 1.05 dm4 mol?4 s?1 at 2 M ionic strength. A mechanism explaining this rate law, with Br2O2 as key intermediate species, is proposed. Errors that may occur when using the Guggenheim method are discussed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 17–21, 2007  相似文献   

13.
The nonlinear Thomas–Fermi–Dirac equation is solved variationally for positive and negative point charges in various III–V compound semiconductors. The parameters are presented, and the results are compared with those obtained numerically.  相似文献   

14.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

15.
We present a relativistic theory for the nuclear spin–spin coupling tensor within the polarization propagator approach using the particle-hole Dirac–Coulomb–Breit Hamiltonian and the full four-component wave function. We give explicit expressions for the coupling tensor in the random-phase approximation, neglecting the Breit interaction. A purely relativistic perturbative electron–nuclear Hamiltonian is used and it is shown how the single relativistic contribution to the coupling tensor reduces to Ramsey's three second-order terms (Fermi contact, spin–dipole, and paramagnetic spin–orbit) in the nonrelativistic limit. The principal propagator becomes complex and the leading property integrals mix atomic orbitals of different parity. The well-known propagator expressions for the coupling tensor in the nonrelativistic limit is obtained neglecting terms of the order c?n (n ? 1). © 1993 John Wiley & Sons, Inc.  相似文献   

16.
17.
A perturbation expansion which connects the hydrogenic limit energy density functional to the Thomas–Fermi functional is discussed. This perturbation series, where the Coulomb energy density functional is treated as the perturbation to the hydrogenic limit functional, is, in fact, the q = (N/Z) expansion of Thomas–Fermi theory. A truncated form of the first-order correction to the functional provides further insight into the model which treats the ground state energy as a local functional of the electron density.  相似文献   

18.
A study of the thermal decomposition of an acetylene–ethane-d6 mixture indicates that the rate constant for hydrogen abstraction from acetylene by methyl is more than 20 times less than for abstraction from ethane. Isotopic exchange is initiated by a rapid reaction between product D atoms and C2H2. A series of experiments involving the reactions of a D2–acetylene mixture indicated that a molecular exchange process was also occurring, and it was shown that d[C2HD]/dt = k[D2]0.7[C2H2]0.3, effective activation energy = 15.8 kcal/mol. This mechanism made an insignificant contribution to isotope exchange in C2H2–C2D6 mixtures.  相似文献   

19.
Rate constants were determined for the reactions of OH radicals with halogenated cyclobutanes cyclo‐CF2CF2CHFCH2? (k1), trans‐cyclo‐CF2CF2CHClCHF? (k2), cyclo‐CF2CFClCH2CH2? (k3), trans‐cyclo‐CF2CFClCHClCH2? (k4), and cis‐cyclo‐CF2CFClCHClCH2? (k5) by using a relative rate method. OH radicals were prepared by photolysis of ozone at a UV wavelength (254 nm) in 200 Torr of a sample reference H2O? O3? O2? He gas mixture in an 11.5‐dm3 temperature‐controlled reaction chamber. Rate constants of k1 = (5.52 ± 1.32) × 10?13 exp[–(1050 ± 70)/T], k2 = (3.37 ± 0.88) × 10?13 exp[–(850 ± 80)/T], k3 = (9.54 ± 4.34) × 10?13 exp[–(1000 ± 140)/T], k4 = (5.47 ± 0.90) × 10?13 exp[–(720 ± 50)/T], and k5 = (5.21 ± 0.88) × 10?13 exp[–(630 ± 50)/T] cm3 molecule?1 s?1 were obtained at 253–328 K. The errors reported are ± 2 standard deviations, and represent precision only. Potential systematic errors associated with uncertainties in the reference rate constants could add an additional 10%–15% uncertainty to the uncertainty of k1k5. The reactivity trends of these OH radical reactions were analyzed by using a collision theory–based kinetic equation. The rate constants k1k5 as well as those of related halogenated cyclobutane analogues were found to be strongly correlated with their C? H bond dissociation enthalpies. We consider the dominant tropospheric loss process for the halogenated cyclobutanes studied here to be by reaction with the OH radicals, and atmospheric lifetimes of 3.2, 2.5, 1.5, 0.9, and 0.7 years are calculated for cyclo‐CF2CF2CHFCH2? , trans‐cyclo‐CF2CF2CHClCHF? , cyclo‐CF2CFClCH2CH2? , trans‐cyclo‐CF2CFClCHClCH2? , and cis‐cyclo‐CF2CFClCHClCH2? , respectively, by scaling from the lifetime of CH3CCl3. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 532–542, 2009  相似文献   

20.
The Hartree–Fock problem in two dimensions (2D) has been solved for 1 ≤ Z ≤ 24 using a Gaussian basis and assuming r?1 Coulomb interactions. The order of occupation of the one-electron states is like in the 3D case. The 1s shell is found to be particularly small and strongly bound, making the 2D hydrogen a “superhalogen” and the 2D He a “superinert gas.” In contrast to 3D, 4s13d2 and 4s23d3 configurations are preferred for the 2D “Sc” and “Cu,” respectively. The six first 2D atoms have stronger and the later ones weaker valence-bonding energies than do their 3D analogs. It is noted that the 2D Dirac energy expression for a hydrogenlike atom for mj = l + 1/2 agrees with the 3D Klein–Gordon one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号