首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aminoacyl-tRNA synthetases are centrally important enzymes in protein synthesis. We have investigated threonyl-tRNA synthetase from E. coli, complexed with reactants, using molecular mechanics and combined quantum mechanical/molecular mechanical (QM/MM) techniques. These modeling methods have the potential to provide molecular level understanding of enzyme catalytic processes. Modeling of this enzyme presents a number of challenges. The procedure of system preparation and testing is described in detail. For example, the number of metal ions at the active site, and their positions, were investigated. Molecular dynamics simulations suggest that the system is most stable when it contains only one magnesium ion, and the zinc ion is removed. Two different QM/MM methods were tested in models based on the findings of MM molecular dynamics simulations. AM1/CHARMM calculations resulted in unrealistic structures for the phosphates in this system. This is apparently due to an error of AM1. PM3/CHARMM calculations proved to be more suitable for this enzyme system. These results will provide a useful basis for future modeling investigations of the enzyme mechanism and dynamics.  相似文献   

3.
4.
5.
Version 9 of the Amber simulation programs includes a new semi-empirical hybrid QM/MM functionality. This includes support for implicit solvent (generalized Born) and for periodic explicit solvent simulations using a newly developed QM/MM implementation of the particle mesh Ewald (PME) method. The code provides sufficiently accurate gradients to run constant energy QM/MM MD simulations for many nanoseconds. The link atom approach used for treating the QM/MM boundary shows improved performance, and the user interface has been rewritten to bring the format into line with classical MD simulations. Support is provided for the PM3, PDDG/PM3, PM3CARB1, AM1, MNDO, and PDDG/MNDO semi-empirical Hamiltonians as well as the self-consistent charge density functional tight binding (SCC-DFTB) method. Performance has been improved to the point where using QM/MM, for a QM system of 71 atoms within an explicitly solvated protein using periodic boundaries and PME requires less than twice the cpu time of the corresponding classical simulation.  相似文献   

6.
The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term.  相似文献   

7.
We have implemented the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulations of alanine dipeptide in water along with the polarizable and nonpolarizable classical MD simulations with different models of water. For the QM/MM MD simulation, the alanine dipeptide is treated with the AM1 or PM3 approximations and the fluctuating solute dipole moment is calculated by the Mulliken population analysis. For the classical MD simulations, the solute is treated with the polarizable or nonpolarizable AMBER and polarizable CHARMM force fields and water is treated with the TIP3P, TIP4P, or TIP5P model. It is found that the relative populations of right-handed alpha-helix and extended beta and P(II) conformations in the simulation trajectory strongly depend on the simulation method. For the QM/MM MD simulations, the PM3/MM shows that the P(II) conformation is dominant, whereas the AM1/MM predicts that the dominant conformation is alpha(R). Polarizable CHARMM force field gives almost exclusively P(II) conformation and other force fields predict that both alpha-helical and extended (beta and P(II)) conformations are populated with varying extents. Solvation environment around the dipeptide is investigated by examining the radial distribution functions and numbers and lifetimes of hydrogen bonds. Comparing the simulated IR and vibrational circular dichroism spectra with experimental results, we concluded that the dipeptide adopts the P(II) conformation and PM3/MM, AMBER03 with TIP4P water, and AMBER polarizable force fields are acceptable for structure determination of the dipeptide considered in this paper.  相似文献   

8.
Conventional combined quantum mechanical/molecular mechanical (QM/MM) methods lack explicit treatment of Pauli repulsions between the quantum‐mechanical and molecular‐mechanical subsystems. Instead, classical Lennard‐Jones (LJ) potentials between QM and MM nuclei are used to model electronic Pauli repulsion and long‐range London dispersion, despite the fact that the latter two are inherently of quantum nature. Use of the simple LJ potential in QM/MM methods can reproduce minimal geometries and energies of many molecular clusters reasonably well, as compared to full QM calculations. However, we show here that the LJ potential cannot correctly describe subtle details of the electron density of the QM subsystem because of the neglect of Pauli repulsions between the QM and MM subsystems. The inaccurate electron density subsequently affects the calculation of electronic and magnetic properties of the QM subsystem. To explicitly consider Pauli interactions with QM/MM methods, we propose a method to use empirical effective potentials on the MM atoms. The test case of the binding energy and magnetic properties of a water dimer shows promising results for the general application of effective potentials to mimic Pauli repulsions in QM/MM calculations. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The hydroxylation reaction catalyzed by p-hydroxybenzoate hydroxylase has been investigated by quantum mechanical/molecular mechanical (QM/MM) calculations at different levels of QM theory. The solvated enzyme was modeled (approximately 23,000 atoms in total, 49 QM atoms). The geometries of reactant and transition state were optimized for ten representative pathways using semiempirical (AM1) and density functional (B3LYP) methods as QM components. Single-point calculations at B3LYP/MM optimized geometries were performed with local correlation methods [LMP2, LCCSD(T0)] and augmented triple-zeta basis sets. A careful validation of the latter approach with regard to all computational parameters indicates convergence of the QM contribution to the computed barriers to within approximately 1 kcal mol(-1). Comparison with the available experimental data supports this assessment.  相似文献   

10.
The quantum chemistry polarizable force field program (QuanPol) is implemented to perform combined quantum mechanical and molecular mechanical (QM/MM) calculations with induced dipole polarizable force fields and induced surface charge continuum solvation models. The QM methods include Hartree–Fock method, density functional theory method (DFT), generalized valence bond theory method, multiconfiguration self‐consistent field method, Møller–Plesset perturbation theory method, and time‐dependent DFT method. The induced dipoles of the MM atoms and the induced surface charges of the continuum solvation model are self‐consistently and variationally determined together with the QM wavefunction. The MM force field methods can be user specified, or a standard force field such as MMFF94, Chemistry at Harvard Molecular Mechanics (CHARMM), Assisted Model Building with Energy Refinement (AMBER), and Optimized Potentials for Liquid Simulations‐All Atom (OPLS‐AA). Analytic gradients for all of these methods are implemented so geometry optimization and molecular dynamics (MD) simulation can be performed. MD free energy perturbation and umbrella sampling methods are also implemented. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Combined ab initio quantum mechanical and molecular mechanical calculations have been widely used for modeling chemical reactions in complex systems such as enzymes, with most applications being based on the determination of a minimum energy path connecting the reactant through the transition state to the product in the enzyme environment. However, statistical mechanics sampling and reaction dynamics calculations with a combined ab initio quantum mechanical (QM) and molecular mechanical (MM) potential are still not feasible because of the computational costs associated mainly with the ab initio quantum mechanical calculations for the QM subsystem. To address this issue, a reaction path potential energy surface is developed here for statistical mechanics and dynamics simulation of chemical reactions in enzymes and other complex systems. The reaction path potential follows the ideas from the reaction path Hamiltonian of Miller, Handy and Adams for gas phase chemical reactions but is designed specifically for large systems that are described with combined ab initio quantum mechanical and molecular mechanical methods. The reaction path potential is an analytical energy expression of the combined quantum mechanical and molecular mechanical potential energy along the minimum energy path. An expansion around the minimum energy path is made in both the nuclear and the electronic degrees of freedom for the QM subsystem internal energy, while the energy of the subsystem described with MM remains unchanged from that in the combined quantum mechanical and molecular mechanical expression and the electrostatic interaction between the QM and MM subsystems is described as the interaction of the MM charges with the QM charges. The QM charges are polarizable in response to the changes in both the MM and the QM degrees of freedom through a new response kernel developed in the present work. The input data for constructing the reaction path potential are energies, vibrational frequencies, and electron density response properties of the QM subsystem along the minimum energy path, all of which can be obtained from the combined quantum mechanical and molecular mechanical calculations. Once constructed, it costs much less for its evaluation. Thus, the reaction path potential provides a potential energy surface for rigorous statistical mechanics and reaction dynamics calculations of complex systems. As an example, the method is applied to the statistical mechanical calculations for the potential of mean force of the chemical reaction in triosephosphate isomerase.  相似文献   

12.
量子力学和分子力学组合方法及其应用   总被引:4,自引:0,他引:4  
QM/MM组合方法在研究凝聚态中的化学反应及生物大分子的结构和活性之间的关系等方面已取得重要进展。这一方法的要点在于将大体系配分成几部分,根据需要对不同部分进行不同级别的处理,因此既利用了量子力学的精确性,又利用了分子力学的高效性。对QM/MM组合理论及其一些最新进展作一简单介绍,并以最近进行了几个工作为例说明QM、MM组合方法的应用。  相似文献   

13.
 2-(Acetylamino)fluorene (AAF), a potent mutagen and a prototypical example of the mutagenic aromatic amines, forms covalent adducts to DNA after metabolic activation in the liver. A benchmark study of AAF is presented using a number of the most widely used molecular mechanics and semiempirical computational methods and models. The results are compared to higher-level quantum calculations and to experimentally obtained crystal structures. Hydrogen bonding between AAF molecules in the crystal phase complicates the direct comparison of gas-phase theoretical calculations with experiment, so Hartree–Fock (HF) and Becke–Perdew (BP) density functional theory (DFT) calculations are used as benchmarks for the semiempirical and molecular mechanics results. Systematic conformer searches and dihedral energy landscapes were carried out for AAF using the SYBYL and MMFF94 molecular mechanics force fields; the AM1, PM3 and MNDO semiempirical quantum mechanics methods; HF using the 3-21G*and 6-31G* basis sets; and DFT using the nonlocal BP functional and double numerical polarization basis sets. MMFF94, AM1, HF and DFT calculations all predict the same planar structures, whereas SYBYL, MNDO and PM3 all predict various nonplanar geometries. The AM1 energy landscape is in substantial agreement with HF and DFT predictions; MMFF94 is qualitatively similar to HF and DFT; and the MNDO, PM3 and SYBYL results are qualitatively different from the HF and DFT results and from each other. These results are attributed to deficiencies in MNDO, PM3 and SYBYL. The MNDO, PM3 and SYBYL models may be unreliable for compounds in which an amide group is immediately adjacent to an aromatic ring. Received: 26 May 2002 / Accepted: 12 December 2002 / Published online: 14 February 2003  相似文献   

14.
Density-functional and semiempirical quantum methods and continuum dielectric and explicit solvation models are applied to study the role of solvation on the stabilization of native and thio-substituted transphosphorylation reactions. Extensive comparison is made between results obtained from the different methods. For the semiempirical methods, explicit solvation was treated using a hybrid quantum mechanical/molecular mechanical (QM/MM) approach and the implicit solvation was treated using a recently developed smooth solvation model implemented into a d-orbital semiempirical framework (MNDO/d-SCOSMO) within CHARMM. The different quantum and solvation methods were applied to the transesterification of a 3'-ribose,5'-methyl phosphodiester that serves as a nonenzymatic model for the self-cleavage reaction catalyzed by the hammerhead and hairpin ribozymes. Thio effects were studied for a double sulfur substitution at the nonbridging phosphoryl oxygen positions. The reaction profiles of both the native and double sulfur-substituted reactions from the MNDO/d-SCOSMO calculations were similar to the QM/MM results and consistent with the experimentally observed trends. These results underscore the need for a d-orbital semiempirical representation for phosphorus and sulfur for the study of experimentally observed thio effects in enzymatic and nonenzymatic phosphoryl transfer reactions. One of the major advantages of the present approach is that it can be applied to model chemical reactions at a significantly lower computational cost than either the density-functional calculations with implicit solvation or the semiempirical QM/MM simulations with explicit solvent.  相似文献   

15.
The semiempirical methods of the OMx family (orthogonalization models OM1, OM2, and OM3) are known to describe biochemical systems more accurately than standard semiempirical approaches such as AM1. We investigate the benefits of augmenting these methods with an empirical dispersion term (OMx-D) taken from recent density functional work, without modifying the standard OMx parameters. Significant improvements are achieved for non-covalent interactions, with mean unsigned errors of 1.41 kcal/mol (OM2-D) and 1.31 kcal/mol (OM3-D) for the binding energy of the complexes in the JSCH-2005 data base. This supports the use of these augmented methods in quantum mechanical/molecular mechanical (QM/MM) studies of biomolecules, for example during system preparation and equilibration. As an illustrative application, we present QM and QM/MM calculations on the binding between antibody 34E4 and a hapten, where OM3-D performs better than the methods without dispersion terms (AM1, OM3).  相似文献   

16.
A combined DFT quantum mechanical and AMBER molecular mechanical potential (QM/MM) is presented for use in molecular modeling and molecular simulations of large biological systems. In our approach we evaluate Lennard-Jones parameters describing the interaction between the quantum mechanical (QM) part of a system, which is described at the B3LYP/6-31+G* level of theory, and the molecular mechanical (MM) part of the system, described by the AMBER force field. The Lennard-Jones parameters for this potential are obtained by calculating hydrogen bond energies and hydrogen bond geometries for a large set of bimolecular systems, in which one hydrogen bond monomer is described quantum mechanically and the other is treated molecular mechanically. We have investigated more than 100 different bimolecular systems, finding very good agreement between hydrogen bond energies and geometries obtained from the combined QM/MM calculations and results obtained at the QM level of theory, especially with respect to geometry. Therefore, based on the Lennard-Jones parameters obtained in our study, we anticipate that the B3LYP/6-31+G*/AMBER potential will be a precise tool to explore intermolecular interactions inside a protein environment.  相似文献   

17.
The trans-Sialidase from Trypanosoma cruzi (TcTS) might be a key enzyme in search of new and more effective anti-Trypanosoma cruzi agents. In this report, molecular docking and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations were employed to determine the binding mode of the three TcTS inhibitors, two quinolinones derivatives (DHQ and THQ) and DANA. The results show that the sulfone group from THQ plays an important role in the protein-inhibitor interactions. In addition, a detailed analysis of the interactions of these inhibitors with key residues inside the binding pocket of TcTS has been carried out using AM1/MM. The residues Asp59, Asp247, Arg35, Arg245, and Arg314 are appointed as key residues to affinity energy of the complexes studied. Finally, the B3LYP/MM and AM1/MM methods were used to calculate global interaction energy, in order to understand the potential of these inhibitors. Among the inhibitors studied, THQ is confirmed as the most efficient one for inhibiting TcTS.  相似文献   

18.
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave somewhat worse performance (MAD?=?3–8 kJ/mol and R2?=?0.1–0.9), but the results were improved compared to previous studies of this system with similar methods.  相似文献   

19.
The newly implemented quantum‐chemical/molecular‐mechanical (QM/MM) functionality of the Groningen molecular simulation (GROMOS) software for (bio)molecular simulation is described. The implementation scheme is based on direct coupling of the GROMOS C++ software to executables of the quantum‐chemical program packages MNDO and TURBOMOLE, allowing for an independent further development of these packages. The new functions are validated for different test systems using program and model testing techniques. The effect of truncating the QM/MM electrostatic interactions at various QM/MM cutoff radii is discussed and the application of semiempirical versus density‐functional Hamiltonians for a solute molecule in aqueous solution is compared. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
We describe a coupling parameter, that is, perturbation, approach to effectively create and annihilate atoms in the quantum mechanical Hamiltonian within the closed shell restricted Hartree-Fock formalism. This perturbed quantum mechanical atom (PQA) method is combined with molecular mechanics (MM) methods (PQA/MM) within a molecular dynamics simulation, to model the protein environment (MM region) effects that also make a contribution to the overall free energy change. Using the semiempirical PM3 method to model the QM region, the application of this PQA/MM method is illustrated by calculation of the relative protonation free energy of the conserved OD2 (Asp27) and the N5 (dihydrofolate) proton acceptor sites in the active site of Escherichia coli dihydrofolate reductase (DHFR) with the bound nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. For a number of choices for the QM region, the relative protonation free energy was calculated as the sum of contributions from the QM region and the interaction between the QM and MM regions via the thermodynamic integration (TI) method. The results demonstrate the importance of including the whole substrate molecule in the QM region, and the overall protein (MM) environment in determining the relative stabilities of protonation sites in the enzyme active site. The PQA/MM free energies obtained by TI were also compared with those estimated by a less computationally demanding nonperturbative method based on the linear response approximation (LRA). For some choices of QM region, the total free energies calculated using the LRA method were in very close agreement with the PQA/MM values. However, the QM and QM/MM component free energies were found to differ significantly between the two methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号