首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the Reaction of Macrocycles with Lanthanoids. II. The Crystal Structures of [K(thf)3]2[(C22H28N4)2Sm2] · 4 THF and [(C22H22N4)Co] · DME In a complicated redox reaction [(TMTAA)K2] and [SmI2(thf)2] form the polynuclear metal complex [K(thf)3]2[(TMTAT)2Sm2]. This complex crystallizes with four molecules THF per formula unit and its structure was determined by single crystal X-ray investigation (spacegroup P21/c (No. 14), z = 4, a = 998.0(2) pm, = b = 2618.3(6) pm, c = 1619.4(3) pm, β = 96.52(2)°). In the dimeric unit [(TMTAT)2Sm2]2? the Sm3+ ions are bonded to the four N atoms of the macrocyclic ligand and one C6H4 ring of the second ligand is attached η6 like to one metal ion. Additionally two [K(thf)3]+ fragments are bonded to this central unit, and therefor coordination number seven results for the K+ ion. [TMTAA]2? is not reduced by [Cp2Co] in a similar reaction. The monomeric paramagnetic complex [(TMTAA)Co] (μeff = 2,76 μB) is formed instead. The structure reveils a square planar coordination of the Co atom by the four N atoms of the TMTAA ligand (spacegroup C2/c (No. 15), z = 4, a = 1945.1(4) pm, b = 1165.6(2) pm, c = 1144.7(2) pm, β = 116.38(1)°).  相似文献   

2.
On the Reaction of Dilithiumbiphenyl with SmBr3. The Crystal Structure of [(C24H16)SmBr(thf)2]2 · [C24H14] In THF SmBr3 forms with [(biph)Li2] the dimeric complex [(quaph)SmBr(thf)2]2 · [C24H14]. The structure was characterized by X-ray single crystal structure analysis (space group P1 (No. 2), Z = 1, a = 943.3(6) pm, b = 1 350.3(1) pm, c = 1 599.9(9) pm, α = 64.99(5)°, β = 89.02(5)°, γ = 73.02(6)°). The Sm iones are bridged by two Br iones. Coordination by one quaph and THF ligands leads to distorded octahedra coordination of the Sm iones. Additionally crystallizes one molecule dibenzonaphthacene.  相似文献   

3.
On the Reaction of the Lanthanides with Chelate Ligands Synthesis and Crystal Structure of [(py2CH)3Gd] GdBr3 reacts with [(py2CH)Li] to the mononuclear complex [(py2CH)3Gd] 1 . The structure of 1 was characterized by X-ray single crystal structure analysis. Space group P21, Z = 2, a = 951.4(10) pm, b = 1369.4(10) pm, c = 1074.5(10) pm, β = 105.69(8)°. The Gd-Ion is surrounded by the six nitrogen atoms of the three chelate ligands and shows a distorted trigonal prismatic coordination. As a difference to the lithium salt of the ligand, the six-membered metalla-cycles in 1 are not planar, but show a boat conformation.  相似文献   

4.
New Complexes of the Lanthanoides with Bidentate Ligands. The Crystal Structures of [(C17H17N2)GdBr2(thf)2] and [(C17H17N2)3Ln] (L = Sm, Gd) Reaction of [(AIP)Li] with GdBr3 leads to a new mononuclear complex [(AIP)GdBr2(thf)2] 1 . In contrast to this with SmI2 the compound [(AIP)3Sm] 2 is build up. Such complexes are also formed with Gd(OR*)3 (R* = OtBu2C6H3) and [(AIP)Li] in a 1:3 ratio, [(AIP)3Gd] 3 . The structures of 1–3 were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (No. 33), Z = 4, a = 1 972.7(9) pm, b = 984.7(5) pm, c = 1 425.0(8) pm, α = β = γ = 90°; 2 · 2 THF: space group C2/c (No. 15), Z = 8, a = 3 644.4(9) pm, b = 1 437.5(5) pm, c = 2 334.4(7) pm, β = 1 21.07(6)°; 3 : space group P2(1)/c (No. 14), Z = 4, a = 1 872.9(1) pm, b = 1 064.6(1) pm, c = 2 282.4(2) pm, β = 103.75(8)°).  相似文献   

5.
Ternary Hydroxides. I. Synthesis, Structure, and Properties of Li2[Sn(OH)6] · 2 H2O Colourless crystals of Li2[Sn(OH)6] · 2 H2O were synthesized by reaction of SnCl4 with LiOH in aqueous solution. The crystal structure was determined from single crystal data. Li2[Sn(OH)6] · 2 H2O: monoclinic, P21/n (Nr. 14), a = 502.3(1), b = 692.3(1), c = 1020.2(3) pm, β = 99.78(1)°, V = 349.6(2) · 106 pm3, Z = 2, R/Rw = 0.0192/0.0472, N(I) > 2σ(I) = 1527, N(Par.) = 54. Within the crystal structure only slightly distorted octahedrally [Sn(OH)6]2? ions are bonded via hydrogen bonds with water molecules forming layers, which themselve are linked by tetrahedrally coordinated Li ions; the structure is in accordance with the IR-data and the results of the 119Sn solid state NMR-spectroscopy; the hydrat water is eliminated at 117.1°C, the condensation reaction – forming the ternary oxide – takes place at 257.7°C.  相似文献   

6.
Synthesis and Crystal Structure of [Cp2MoHLi(thf)]3 · Toluene [Cp2MoHLi]4 reacts in THF/Toluene to the trimeric complex [Cp2MoHLi(thf)]3 · Toluene 1 . The structure of 1 was characterized by X-ray single crystal structure analysis. Space group P63, Z = 2, a = 1459.5(9) pm, c = 1182.3(8) pm. The central unit is represented by a Mo3Li3-hexagon. Each Mo-Atom is surrounded by two Cp-Ligands. One THF-Molecule is coordinated to each Li-atom. The Hydrogen-Ligand could not be located by the single crystal structure analysis.  相似文献   

7.
Synthesis and structure of a Molybdenum–Gadolinium Heterometallic Complex. The Structure of [Li(thf)4]2[Cp2MoSGdBr4(thf)]2 [Cp2MoHLi] reacts in THF with S and GdBr3 to yield the tetranuclear heterobimetallic complex [Li(thf)4]2[Cp2MoSGdBr4(thf)]2. The bonding situation and the structure of this compound were characterized by X-ray structure analysis (space group P1 (No. 2), Z = 1, a = 10.845(2) Å, b = 12.166(2) Å, c = 15.881(2) Å, α = 101.74(2)°, β = 97.62(2)°, γ = 103.97(2)°). Each S atom of the central Mo2S2-ring is coordinated by a GdBr4(thf) fragment. Additionally each Mo atom is connected to two Cp ligands. This leads to a tetrahedral coordination of the Mo atoms and a octahedral coordination of the Gd ions.  相似文献   

8.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

9.
Crystal Structure of CaZn2(OH)6 · 2 H2O The electrochemical oxidation of zinc in a zinc/iron-pair leads in an aqueous NH3 solution of calciumhydroxide at room temperature to colourless crystals of CaZn2(OH)6 · 2 H2O. The X-ray structure determination was now successful including all hydrogen positions. P21/c, Z = 2, a = 6.372(1) Å, b = 10.940(2) Å, c = 5.749(2) Å, β = 101.94(2)° N(F ≥ 3σF) = 809, N(Var.) = 69, R/RW = 0.011/0.012 The compound CaZn2(OH)6 · 2H2O contains Zn2+ in tetrahedral coordination by OH? and Ca2+ in octahedral coordination by four OH? and two H2O. The tetrahedra around Zn2+ form corner sharing chains, three-dimensionally linked by isolated polyhedra around Ca2+. Weak hydrogen bridge bonds result between H2O as donor and OH?.  相似文献   

10.
Synthesis and Crystal Structure of [Li(DME)2I] . LiI can be dissolved at 50°C in toluene/DME (2:1). At - 20°C [Li(DME)2I] ( 1 ) was isolated in 75% yield. 1 was characterized by NMR techniques as well as an X-Ray structure determination. 1 crystallizes in the space group C2/c with a = 1 356.9(2), b = 813.2(1), c = 1 259.1(2) pm, and β = 99.74(1)°.  相似文献   

11.
On the Crystal Structure of Barium Acetylene Dicarboxylate Monohydrate – Ba[C2(COO)2] · H2O Ba[C2(COO)2] · H2O crystallizes in the monoclinic space group P21/a. The lattice constants are a = 753.4(2), b = 921.8(2), c = 881.8(2) pm and β = 102.00(2)°. The crystal structure is characterized by an intricate three-dimensional framework made up by Ba2+ and [C2(COO)2]2? ions. Ba2+ has coordination number 9 and is bound to two water molecules and seven oxygen atoms belonging to carboxylate groups of the dianion. The [C2(COO)2]2? ion does not merely act like a multiple monodentate ligand, but coordinates Ba2+ in a chelate-like manner as well. The carboxylate groups of the dianion are inclined to each other by 65°.  相似文献   

12.
Hydrogen Sulfates with Disordered Hydrogen Atoms – Synthesis and Structure of Li[H(HSO4)2](H2SO4)2 and Refinement of the Structure of α-NaHSO4 The structure of Li[H(HSO4)2](H2SO4)2 has been determined for the first time whereas the structure of α-NaHSO4 has been refined, so that direct determination of the hydrogen positions was possible. Both compounds crystallize triclinic in the space group P1 with the lattice constants a = 6.708(2), b = 6.995(1), c = 7.114(1) Å, α = 75.53(1), β = 84.09(2) and γ = 87.57(2)° (Z = 4) for α-NaHSO4 and a = 4.915(1), b = 7.313(1), c = 8.346(2) Å, α = 82.42(3), β = 86.10(3) and γ = 80.93(3)° (Z = 1) for Li[H(HSO4)2](H2SO4)2. In both compounds there are disordered hydrogen positions. In the structure of α-NaHSO4 there are two crystallographically different HSO4? tetrahedra and two different coordinated Na atoms. The system of hydrogen bonds can be described by chains in [0–11] direction. The disordering of the H atoms reduces the differences between the S? O and S? OH distances (1.45 and 1.50 Å) while in the ordered HSO4 unit “regular” bond lengths are observed (1.45 und 1,57 Å). In the structure of Li[H(HSO4)2](H2SO4)2 there are two crystallographically different SO4-tetrahedra. The first one belongs to the [H(HSO4)2]? unit while the second one represents H2SO4 molecules. The H atom which is located nearby the symmetry centre and connects two HSO4 units by a short O…?O distance of 2.44 Å. Li is located on a symmetry centre and is slightly distorted octahedrally coordinated by oxygen atoms of six different SO4 tetrahedra. The system of hydrogen bonds can be regarded as consisting of double layers parallel to the xy-plane.  相似文献   

13.
New Mono- and Polynuclear Complexes of the Lanthanides. On the Reaction of Ph2Se2 with Ytterbium Surprising formation of different complexes during the reaction of Ytterbium with Dichalcogenides. With THF is the mononuclear complex [Yb(SePh)3(thf)3] 1 (space group P31c (No. 159), Z = 2, a = 15.353(3) Å, c = 7.8920(10) Å) built up. In this compound is the Lanthanidion octahedrally souronded by the ligands. Reaction in Toluol/THF leads in contrast to the tetranuclear complex [Yb4(SePh)8O2(thf)6] 2 (space group C2/c (No. 14), Z = 4, a = 27.084(9) Å, b = 13.021(4) Å, c = 24.002(8) Å, β = 106.13(3)°). In DME it is possible to isolate the ionic species [Yb3(SePh)6(dme)4][Yb(SePh)4(dme)] 3 (space group P1 (No. 2), Z = 2, a = 11.109(3) Å, b = 11.664(2) Å, c = 36.303(10) Å, α = 84.60(4)°, β = 89.52(3)°, γ = 73.69(2)°). In this reactions are neutral and also ionic complexes accesible.  相似文献   

14.
Crystal Structure of SrZn(OH)4 · H2O Colorless crystals of SrZn(OH)4 · H2O are obtained by electrochemical oxidation of Zn in a zinc/iron pair in an aqueous ammonia solution saturated with strontium hydroxide. The X-ray crystal structure determination was now successful including all hydrogen positions: P1 , Z = 2, a = 6.244(1) Å, b = 6.3000(8) Å, c = 7.701(1) Å, α = 90.59(1)°, β = 112.56(2)°, γ = 108.66(2)°, N(F ≥ 3σF) = 1967, N(Var.) = 84, R/Rw = 0.020/0.024. In SrZn(OH)4 · H2O Zn2+ is tetrahedrally coordinated by four OH? -ions while Sr2+ has 6 OH? and one H2O as neighbours. The polyhedra around Sr2+ are connected to chains which are linked three-dimensionally by isolated tetrahedra [Zn(OH)4]. Hydrogen bonds between H2O as donor and OH? are characterized by raman spectroscopy.  相似文献   

15.
An Octahedral Niobium Cluster containing Six Terminal Azide Groups: The Structure of Rb4[Nb6Br12(N3)6](H2O)2 Six terminal halide ligands of [Nb6Br12Br6]4? can be substituted in solution by azide ions. Single-crystals of Rb4[Nb6Br12(N3)6](H2O)2 were obtained during the evaporation of the water/methanol solvent, and structurally characterized by X-ray methods: Space group P21/c, Z = 2, a = 970.8(5) pm, b = 1525.4(7) pm, c = 1280.0(7) pm, β = 97.15(6)°. The [Nb6Br12(N3)6]4? ions contain six terminal azide groups at the corners of the octahedral niobium cluster (d Nb–N = 227 pm). The [Nb6Br12(N3)6]4? ions are interconnected by Rb+ and H2O. Crystals of Rb4[Nb6Br12(N3)6](H2O)2 are explosive towards heat or mechanic pressure.  相似文献   

16.
X-Ray Structure of [Li(tmeda)2][Zn(2,4,6- i Pr3C6H2)3] A side reaction of zinc halide containing VCl2(tmeda)2 and Li(2,4,6-iPr3C6H2) formed [Li(tmeda)2][Zn(2,4,6-iPr3C6H2)3] · 0,5[(tmeda)Li(μ-Cl)]2. The crystal structure (orthorhombic, Pbca, a = 26,226(2), b = 19,739(2), c = 27,223(5) Å, Z = 8, R = 0,062, wR2 = 0,154) contains trigonal planar zinc anions with Zn–C distances of 2,039(7) Å (average) and a propeller like arrangement of the aryl rings.  相似文献   

17.
The Structure of an unusual Tetramere of Lithium Phenoxide: [C6H5OLi · C4H8O]4 · C6H5OH Single crystals of lithium phenoxide have been obtained from THF. In the structure (P 21/n, Z = 4, a = 11.69 Å, b = 21.15 Å, c = 18.55 Å, β = 91.11°) four lithium atoms and four phenoxide oxygen atoms are cubically arranged. Further, each lithium atom coordinates the oxygen atom of a tetrahydrofuran molecule. The ideal cubeform structure is disturbed by one phenol molecule which is coordinated in addition to four phenoxide and four THF molecules. Hence, one edge of the cube (Li4? O4) is substituted by the coordination of the phenol oxygen atom O5 with Li4 and hydrogen bonding between O4 and the hydroxy group of phenol. Van der Waals forces are the only interaction between these complexes.  相似文献   

18.
On the Existence of the Tetrahydrogenorthoperiodate Ion. The Crystal Structure of LiH4IO6 · H2O The crystal structure of LiH4IO6 · H2O has been determined (P1 ; a = 564.74(12), b = 574.41(13), c = 970.4(6) pm, α = 101.37(2), β = 96.37(2), γ = 114.72(2)°; Z = 2; 5 731 independent reflections; R = 0.038). All hydrogen-atoms were localized from difference fourier map and refined without applying constraints. Thus the existence of the tetrahydrogenorthoperiodate-ion in the solid state is proved, unambigously. The crystal structure is discussed and compared to other alkaliorthoperiodates.  相似文献   

19.
Reaction of Molybdenum Pentachloride with Trichloronitromethane. Crystal Structure of [MoOCl3 · POCl3]2 An improved method for the preparation of MoO2Cl2 by the reaction of MoCl5 with CCl3NO2 is reported. In the presence of the solvens POCl3, molybdenum pentachloride reacts with trichloronitromethane forming the oxonitrosyl complex Mo(NO)OCl3 · POCl3. In CH2Cl2 solution this complex is decomposed forming [MoOCl3 · POCl3]2. The crystal structure was solved by X-ray methods. [MoOCl3 · POCl3]2 crystallizes monoclinic in the space group P21/c with two dimers in the unit cell (R = 0.07, 2327 independent reflexions). The complex dimerizes by symmetric chloro bridges; the oxoligand is in terminal position. The MoO bond length of 163 pm corresponds with a Mo?O triple bond. The POCl3 molecule is coordinated in position trans to the oxoligand. The IR spectra are reported and assigned.  相似文献   

20.
Imidazole Derivatives. XXIV. [Li12O2Cl2(ImN)8(THF)4] · 8 THF: a Peroxo Lithium Fragment in a Novel Cage Structure 1,3-dimethyl-2-iminoimidazoline ( 8 , ImNH) reacts with methyl lithium to give [ImNLi]n ( 9 ). In tetrahydrofuran, crystals of C56H96Cl2Li12N24O6 · 8 C4H8O ( 10 ) are obtained. The structure of 10 consists of a Li12Cl2N8O2 core in which a peroxo unit is incorporated into a stack of ladder fragments. Over all, four tetrahydrofuran and eight imidazoline ligands are attached at the lithium and nitrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号