首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal Structure of Tl4Fe(CN)6 Single crystals of Tl4Fe(CN)6 have been prepared for the first time and its crystal structure was determined. The pale yellow compound crystallizes in the triclinic space group P1 (No. 2) with the lattice parameters a = 726.6(1) pm, b = 797.4(8) pm, c = 1 336.0(1) pm, α = 104.7(9)°, β = 90.0(8)°, γ = 97.6(7)°, Z = 2 in a new structure type.  相似文献   

2.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

3.
Tetrafluoroaurates(III) of Lanthanoides M2F[AuF4]5 (M = Tb, Dy, Ho, Er) Tetrafluoroaurates(III) M2F[AuF4]5 with M = Tb, Dy, Ho, Er, all yellow, have been obtained. From single crystal data they crystallize triclinic, space group P1 -C1i (No. 2) with Tb: a = 1 194,34(7) pm, b = 798,46(6) pm, c = 902,02(7) pm, α = 89,033(7)°, β = 88,990(6)°, γ = 89,006(7)°; Dy: a = 1 191,66(9) pm, b = 796,33(8) pm, c = 899,65(9) pm, α = 88,956(8)°, β = 89,056(8)°, γ = 88,972(8)°; Ho: a = 1 189,06(10) pm, b = 795,46(6) pm, c = 896,81(7) pm, α = 88,912(8)°, β = 89,101(7)°, γ = 88,873(8)°; Er: a = 1 185,20(40), b = 793,98(14), c = 893,83(20), α = 88,751(23)°, β = 89,187(26)°, γ = 88,884(9)°  相似文献   

4.
Synthesis and Crystal Structure of Bis(1,2-dimetyl-5-nitro-imidazole)dichlorocobalt(II) Bis(1,2-dimethyl-5-nitro-imidazol)dichlorocobalt(II) was obtained by reaction of CoCl2 · 6 H2O with 1,2-dimethyl-5-nitro-imidazole in methanol. The compound forms blue crystals which were characterized by IR and UV-vis spectroscopy and by an X-ray crystal structure determination. Co(C5H7N3O2)2Cl2: tetragonal, space group I4 2d, Z = 8, a = 1142.1(1) pm, c = 2577.3(2) pm. R = 0.036 for 670 independent reflexions. The Co atom is tetrahedrally surrounded by two chlorine and two N atoms at distances of 222.8(2) and 203.5(4) pm.  相似文献   

5.
A New Access to Alkali Vanadates(IV,V) Crystal Structure of Rb2V3O8 By heating vanadium(V) oxide with rubidium iodide to 500°C, the vanadium experiences partial reduction and Rb2V3O8 is obtained. It has the fresnoite structure. Crystal data: a = 892.29(7), c = 554.49(9) pm at 20°C, tetragonal, space group P4bm, Z = 2. X-ray crystal structure determination with 620 observed reflexions, R = 0.027. V2O7 units share vertices with VO5 square pyramids, forming layers; a layer can be regarded as association product of VO2+ and V2O74? ions. The Rb+ ions between the layers have pentagonal-antiprismatic coordination.  相似文献   

6.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

7.
Reactions of Lanthanide Halides with Alkalibenzyl Compounds. Synthesis and Crystal Structures of [(tmeda)(C6H5CH2)2Y(μ-Br)2Li(tmeda)], [(tmeda)2SmBr(μ-Br)2Li(tmeda)] and [(dme)2SmBr(μ-Br)]2 Alkali-benzyl compounds react via a metathesis reaction with lanthanide halides to benzyl complexes of the rare earths. Reaction of [(C6H5CH2)Li(tmeda)] with YBr3 leads to the complex [(tmeda)Y(C6H5CH2)2 (μ-Br)2Li(tmeda)] 1 , in which Yttrium and lithium are linked via two bromide bridges. However, the reaction of [(C6H5CH2)Li(tmeda)] with SmBr3 in toluene/tmeda leads under reduction of the Sm ion to the compound [(tmeda)2SmBr(μ-Br)2Li(tmeda)] 2 . 2 reacts with DME to yield the dimeric compound [(dme)2SmBr(μ-Br)]2 3 . The structures of 1 – 3 were determined by X-ray single crystal structure analysis:
  • 1: Space group P21/c, Z = 4, a = 829.5(6) pm, b = 1477.9(11) pm, c = 2575.0(10) pm, β = 92.03(6)°,
  • 2: Space group P21, Z = 2, a = 954,7(3) pm, b = 1338.5(6) pm, c = 1244.9(5) pm, β = 107.51(3)°,
  • 3: Space group P1 , Z = 1, a = 797.2(7) pm, b = 818.3(7) pm, c = 1169.7(8) pm, α = 100.96(6)°, β = 92.03(6)°, γ = 91.75(7)°.
  相似文献   

8.
The Crystal Structure of Bis(N,N-diethyl-N′ -benzoylselenoureato)nickel(II) Ni(C12H15N2OSe)2 crystallizes in the monoclinic space group P21/c. The cell parameters are a = 11.399(3), b = 16.016(4), c = 14.910(6) Å, β = 104.64(3)° and Z = 4. The structure was solved with Patterson and direct methods and was refined to a final R-value of 5.43%. Nickel is coordinated to two N,N-diethyl-N′ -benzoylselenourea molecules to form a bidentally coordinated chelate complex with cis arrangement of the donor atoms. Coordinaton around the nickel atom is planar while the chelate rings diverge from planarity. The ethyl groups of one diethylamino group are disordered. The Ni? Se bond lengths are 2.244(1) and 2.264(1) Å, the Ni? O bond lengths are 1.871(4) and 1.883(4) Å, respectively.  相似文献   

9.
Polysulfonylamines. CXXIV. Preparation of Organylmercury(II) Di(methanesulfonyl)amides and Crystal Structure of Ph–Hg–N(SO2Me)2 Four N,N‐disulfonylated organylmercury(II) amides R–Hg–N(SO2Me)2, where R is Me, iPr, Me3SiCH2 or Ph, were obtained on treating the appropriate chlorides RHgCl with AgN(SO2Me)2, and characterized by 1H and 13C NMR spectra. In the crystal structure of the phenyl compound (orthorhombic, space group Pbca, Z = 8, X‐ray diffraction at –95 °C), the molecule exhibits a covalent and significantly bent C–Hg–N grouping [bond angle 172.7(3)°; Hg–C 204.0(8), Hg–N 209.1(7) pm]. One sulfonyl oxygen atom forms a short intramolecular Hg…O contact [296.1(5) pm] and simultaneously catenates glide‐plane related molecules via a second Hg…O interaction 297.6(5) pm], thus conferring upon HgII the effective coordination number 4 and a geometrically irregular coordination polyhedron (bond angles from 173 to 54°).  相似文献   

10.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

11.
Pentacalcium Hexaphosphahypodiphosphate, Ca5P8, a Compound with Isolated Anions P810? in the Staggered Ethane Conformation Ca5P8 is prepared from calcium and red phosphorus in a molar ratio 5:8 in argon atmosphere in corundum crucibles inserted in quartz ampullae (3.5 d 1 000°C). It is a red-brown powder which is hydrolyzed by moisture. Single crystals are formed from powder at 1 100°C within 60 d. Ca5P8 crystallizes in a new structure type (mC26) with isolated anions P810? in staggered conformation: C2/m (no. 12); a = 689.9(4) pm, b = 1 188,3(4) pm, c = 748.4(3) pm, β = 108.25(2)°, Z = 2; d = 2.56(1). Ca5P8 is the first compound containing polyphosphide anions with fourfold and single bonded phosphorus atoms (formally P+ and P2?, resp.). The cations Ca2+ are arranged in a distorted cubic close-packing. The centers of the polyphosphide anions replace in an ordered way one third of Ca2+ in every second layer. The terminal P atoms occupy all octahedral interstices, so that P810? is coordinated by 18 Ca2+ in form of a cuboctahedron with capped squaric faces.  相似文献   

12.
Preparation and Crystal Structure of PtI3, a Mixed-valence Platinum (II, IV) Iodide PtI3 was obtained by thermal decomposition of PtI4 in a closed system at 300°C and 8 atm iodine pressure. Single crystals were formed by the reaction of PtI4 with aqueous solutions of KI and I2 at 270°C. The crystal structure of the monoclinic compound (a = 673.5(2) pm; b = 1206.1(4) pm; c = 1331.3(5) pm; β = 101.25(6)°; Z = 8; space group C2/c-C2h6) contains square planar PtI4 and octahedral PtI6 groups which are connected by common edges to chains.  相似文献   

13.
Chloroantimonates(III): Crystal Structure of 4,4′-Dipyridylium Pentachloroantimonate, (C10H8N2H2)SbCl5 (C10H8N2H2)SbCl5 crystallizes in the triclinic space group P1 with a= 843.1(5), b = 958.6(8), c = 1098.0(10) pm, α = 112.45(6), β = 101.95(6), γ = 97.78(6)° and Z = 2. The structure is built up of 4,4 °-dipyridylium cations and pentachloroantimonate anions. The Sb atoms are distorted octahedrally coordinated. Mean distances are Sb? Cl = 242 pm (1×), Sb? Cl = 255 pm (2×), Sb ? Cl = 275 pm (2×) and Sb…?Cl.= 319 pm (1× ). The anions build up dimers.  相似文献   

14.
Phosphoraneiminato Complexes of Manganese(II) and Nickel(II) with Heterocubane Structure. Crystal Structures of [MCl(NPEt3)]4 with M = Mn and Ni The phosphoraneiminato complexes [MCl(NPEt3)]4 with M = manganese and nickel as well as [MnBr(NPEt3)]4 are formed from the anhydrous halides MX2 and excess phosphoraneimine Me3SiNPEt3 by fusion reaction. They form paramagnetic, moisture-sensitive, orange (M = Mn) and turquoisegreen (M = Ni) crystals, respectively, which are characterized by i.r. spectroscopy and by crystal structure determinations. [MnCl(NPEt3)]4 ( 1 ): Space group C2/c, Z = 4, structure solution with 3 591 unique reflections, (2 811 > 2σ(I)) R = 0.036. Lattice dimensions at -50°C: a = 2104.3, b = 1100.6, c = 1966.5 pm, β = 115.87°. [NiCl(NPEt3)]4 ( 2 ): Space group C2/c, Z = 4, structure solution with 2 711 unique reflections, (1611 > 2σ(I)) R = 0.056. Lattice dimensions at ?50°C: a = 2051.6, b = 1099.2, c = 1954.6 pm, β = 115.80°. 1 and 2 are isostructural with one another. They form heterocubane structures in which the metal atoms are linked via μ3-N-bridges of the phosphoraneiminato groups with M4N4 bridge-type bond angles close to 90°.  相似文献   

15.
Synthesis, Properties, and Structure of Octameric Titanium Imide Chloride [Ti(NSiMe3)Cl2]8 The reaction of TiCl4 with N(SiMe3)3 in sealed glas-tubes yields the titanium imide chloride [Ti(NSiMe3)Cl2]8 ( 1 ). It crystallizes in the space group C2/c with a = 2 704.5(4), b = 1 303.9(1), c = 2 205.4(2) pm, β = 112.78(1)°, Z = 4. In 1 six Ti atoms are linked together by chloro and trimethylsilylimido bridges to form a ring structure. Two TiCl2-groups are bound in addition to the ring by two imido bridges. Upon annealing at 250°C 1 transformes to the isomeric polymer [Ti(NSiMe3)Cl2]n. Above 250°C 1 decomposes under separation of Me3SiCl affording TiNCl.  相似文献   

16.
Structure and Electrochemical Study of Nb3Cl8 The compound Nb3Cl8 was synthesized from NbCl5 and niobium metal in a sealed quartz ampoule at 700 °C. Single crystals, obtained from LiCl melt were used for X‐ray structure determination (space group P 3 m1, Z = 2, lattice parameters a = b = 672.95(7) pm, c = 1223.2(2) pm (at 100 K), R1 = 0.029, wR2 = 0.064 for all independent reflections). Electrical resistivity measurements are reported. Electrochemical intercalation of lithium into the structure of Nb3Cl8 was studied.  相似文献   

17.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

18.
Synthesis and Structure of Mo2NCl7 The reaction of VN with MoCl5 at 175 °C in a sealed glass ampoule yields the molybdenum(V) nitride chloride Mo2NCl7 in form of air sensitive black crystals with the triclinic space group P1¯ and a = 905.7(8); b = 975.4((6); c = 1283.4(8) pm, α = 103.13(4)°; β = 109.83(5)° und γ = 98.58(5)°. The crystal structure is built up from dinuclear units [Mo2N2Cl7]3— and [Mo2Cl7]3+, which are connected by asymmetric nitrido bridges to form endless chains. Within both dinuclear units the Mo atoms are bridged by three Cl atoms resulting in a Mo‐Mo distance of 349.2(3) pm in the unit [Mo2N2Cl7]3—. In case of [Mo2Cl7]3+, however, a shorter Mo‐Mo distance of 289.4(3) pm is observed, which can be interpreted by a single bond. Correspondingly a reduced magnetic moment of 0.95 B.M. per Mo atom is observed.  相似文献   

19.
Polysulfonyl Amines. LVII. Two Silver(I) Di(organosulfonyl)-amides with Silver-η2-Aryl or Silver-Silver Interactions: Crystal Structures of Silver Di(benzenesulfonyl)amide-Water (1/0.5) and of Anhydrous Silver Di(4-toluenesulfonyl)-amide Crystals of [(PhSO2)2NAg(μ-H2O)AgN(SO2Ph)2]n ( 5 ) and [(4-Me? C6H4SO2)2NAgAgN(SO2C6H4-4-Me)2]n ( 6 ) were obtained from aqueous solutions. The crystallographic data are for 5 (at ?95°C): monoclinic, space group C2/c, a = 2 743.8(5), b = 600.49(12), c = 1 664.5(3) pm, β = 101.143(15)°, V = 2.6908 nm3, Z = 8, Dx = 2.040 Mg m?3; for 6 (at ?130°C): monoclinic, space group P21/n, a = 1 099.8(5), b = 563.7(3), c = 2 487.7(13) pm, β = 99.68(4)°, V = 1.5203 nm3, Z = 4, Dx = 1.888 Mg m?3. In both crystals, the silver atom has a fivefold coordination. The structure of 5 displays [(RSO2)2N? Ag(μ-H2O)Ag′? N(SO2R)2] units with Ag? N 226.9 pm, Ag? O 236.7 pm and Ag? O? Ag′ 95.3°; the water oxygen lies on a crystallographic twofold axis. These units are extended to two fused six-membered rings by intramolecular dative bonds (S)O → Ag′ and S(O)′ → Ag (249.3 pm). One phenyl group from each (PhSO2)2N moiety is η2-coordinated with its p-C and one m-C atom to a silver atom of a neighbouring bicyclic unit related by a glide plane to form infinite parallel strands (p-C? Ag 252.2, m-C? Ag 263.9 pm). The strands are interconnected into parallel layers through hydrogen bonds between H2O and sulfonyl oxygens [O …? O(S) 276.1 pm]. These layers consist of a hydrophilic inner region containing metal ions, N(SO2)2 fragments and water molecules, and hydrophobic surfaces formed by phenyl groups. The structure of 6 features centrosymmetric [(RSO2)2N? Ag? Ag′? N(SO2R)2] units with two intramolecular dative bonds (S)O → Ag′ and (S)O′ → Ag (Ag? Ag′ 295.4, Ag? N 226.0, Ag? O 229.4 pm). These bi-pentacyclic units are associated by translation parallel to y into infinite strands by two dative (S)O → Ag bonds per silver atom (Ag? O 243.2 and 253.3 pm).  相似文献   

20.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P ? P-P[Cr(CO)5]2(SiMe3)} Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42? (R ? SiMe3, R′ ? Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1 -Ci. The distances d(P? P) = 202.5(1)pm and d(P? P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr? P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号