首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The thermal dehydration reaction of potassium titanium oxalate, K2TiO(C2O4)2·2H2O, has been studied by means of thermogravimetry (TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) in nitrogen atmosphere at different heating rates. K2TiO(C2O4)2·2H2O dehydrates in a single step through a practically irreversible process. The activation energy involved and its dependence on the conversion degree were estimated by evaluating the thermogravimetric data according to model-free methods, and values of activation energy were determined for the dehydration reaction. Activation energy values were also evaluated from DSC data using isoconversional methods. The complexity of the dehydration of K2TiO(C2O4)2·2H2O is illustrated by the dependence of E on the extent of conversion, ?? (0.05??????????0.95).  相似文献   

2.
From rehydration experiments the hydrates Ba(OH)2 · 8 H2O, Ba(OH)2 · 3 H2O β-Ba(OH)2, · 1 H2O, and γ-Ba(OH)2 · 1 H2O have been found in the system Ba(OH)2-H2O. Thermoanalytical measurements (DTA, TG, DTG, high temperature X-ray diffraction, high temperature Raman scattering) on these hydrates are reported. Thermal decomposition of Ba(OH)2 · 8 H2O and Ba(OH)2 · 3 H2O always results in the formation of β-Ba(OH)2 · 1 H2O, the stable form of the monohydrates at ambient temperature. Dehydration of β- and γ-Ba(OH)2 · 1 H2O, both of which form anhydrous β-Ba(OH)2 as the first product of decomposition, starts at 105 and 115°C, respectively. Single crystals of Ba(OH)2 · 3 H2O and γ-Ba(OH)2 · 1 H2O were prepared from Ba(OH)2 · 8 H2O meltings and from ethanolic solutions of Ba(OH)2 , respectively. The crystal data are: Ba(OH)2 · 3 H2O (orthorhombic, Pnma): a = 764.0(2), b = 1140,3(5), c = 596.5(1) pm, Z = 4; γ-Ba(OH)2 · 1 H2O (monoclinic, P21/m or P21): a = 704.9(2), b = 418.4(1), c = 633.3(1) pm, β = 111.45(2)°, Z = 2.  相似文献   

3.
Three clathrate hydrates: (i-C5H11)2·(C4H9)2NCl·38H2O (mp 20.5°C), (i-C5H11)2·(C4H9)2NCl·32H2O (mp 22.2°C), and (i-C5H11)2·(C4H9)2NCl·27H2O (mp 23.8°C) were detected in the system diisopentyldibutylammonium chloride-water. Crystals of all the compounds were isolated, and their composition was determined. The size effect of the halide anions (F?, Cl?, and Br?) on the properties of related compounds was considered.  相似文献   

4.
Non-isothermal thermal studies of the dehydration of the double salt hydrates of the type M(I)2SO4·M(II)SO4·6H2O and their D2O analogues were carried out where M(I) = TI(I) and M(II) = Mg(II), Co(II), Ni(II), Cu(II) or Zn(II). Thermal parameters like activation energy, order of reaction, enthalpy change, etc. were evaluated from the analysis of TG, DTA and DTG curves. These thermal parameters were compared with those of other series, like NH4(I), K(I), Rb(I) and Cs(I) studied earlier. On deuteration the nature of dehydration altered in the case of Tl2Zn(SO4)2·6H2O only. The thermal stability of the salt hyd discussed in relation to the salt hydrates of other series. The role of divalent cation on the thermal properties of dehydration of salt hydrates is also discussed. The order of reaction was always found unity. The values of ΔH were within ≈12–≈16 kcal mol?1.  相似文献   

5.
A new Schiff base ligand, 2-((E)-((4-(((E)-benzylidene)amino)phenyl)imino)methyl)-naphthalene-1-ol, was prepared by the reflux condensation of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde and benzaldehyde. Metal complexes were prepared by reacting the ligand with metal salts: VCl3, CrCl3·6H2O, MnCl2·3H2O, FeCl3·6H2O, CoCl3·6H2O, NiCl2·6H2O, CuCl2·2H2O, and ZnCl2. The ligand and its metallic complexes were characterized by various techniques such as elemental analysis, AAS, NMR, IR, UV–Vis, TGA, DTA, XRD and TEM. The data confirmed that the ligand coordinated with the metal ions in a bidentate nature, bonding through its azomethine nitrogen atom and phenolic oxygen atom; this gave an octahedral geometry. The XRD patterns of the complexes indicated that they were of various structures: the Mn(II), Co(III), and Cu(II) complexes were triclinic, the ligand and Ni(II) complex were orthorhombic, the V(III) and Zn(II) complexes were hexagonal, the Cu(II) complex was monoclinic, and the Fe(II) complex was cubic. TEM analysis confirmed that the complexes were nanoscale in nature. The antibacterial and antifungal activities of the ligand and its complexes against Salmonella enterica serovar typhi and Candida albicans were investigated by the hole plate diffusion method. It was observed that the Co(II) and Zn(II) complexes had intermediate antibacterial activities, while the V(III) complex had the highest activity against C. albicans fungi. The in vitro anticancer activities of the ligand and its metal complexes were tested towards PC-3, SKOV3, and HeLa tumour cell lines, where they exhibited higher antitumour activities against these selected human cell lines than clinically used drugs such as cisplatin, estramustine, and etoposide.  相似文献   

6.
The paper reports an attempt to correlate the structures of hydrates of copper(II) sulphate with some characteristic features of the kinetics of their thermal decompositions. Non-isothermal thermogravimetric measurements were employed to obtain values of experimental activation energy and entropy for the dehydration of CuSO4 · 5 H2O, CuSO4 · 3 H2O and CuSO4 · H2O. The values ofE * andΔS * for the dehydration of CuSO4 · 3 H2O were found to be only little affected by the mode of preparation of this compound. On the other hand, the values ofE * andΔS * for the dehydration of CuSO4 · ·H2O are strongly dependent on whether this compound was prepared by thermal decomposition of CuSO4 · 5 H2O or CuSO4 · 3 H2O, or by crystallization from solution. As regards the crystalline hydrates of copper(II) sulphate, the greatest energetic hindrance for dehydration was observed for CuSO4 · 3 H2O. The experimental results are also discussed with respect to the present opinions concerning the possibilities of using thermal analyses to obtain information on the relationship between the structures and reactivities of solids.  相似文献   

7.
Hydrates of Barium Chloride. X-ray, Thermoanalytical, Raman, and I.R. Data In the system BaCl2? H2O the hydrates BaCl2 · 2 H2O, BaCl2 · 1 H2O, BaCl2 · 1/2 H2O, and BaCl2 · uH2O were obtained. X-ray powder data, i.r. and Raman spectra, as well as thermoanalytical measurements (TG, DTA) are reported. BaCl2 · 1 H2O and BaCl2 · 1/2 H2O, which are both isotype with the corresponding hydrates of SrCl2, were prepared by dehydration of BaCl2 · 2 H2O or by back hydration of anhydrous BaCl2 with the calculated amounts of water. BaCl2 · uH2O (u ≈? 1) is formed as the primary product by the reaction of anhydrous BaCl2 with water vapour at room temperature. Preparation methods of salt hydrates by controlled back hydration of the anhydrous salts are reported.  相似文献   

8.
The system hexafluorosilicic acid-water was studied by low-temperature difference thermal analysis and X-ray powder diffraction in the water-rich range of 80--100 mol% H2O. A quasi-binary behavior was found and the melting diagram constructed. It shows the existence and stability ranges of three crystalline hydrates H2SiF6 · nH2O with n = 4, 6, and 9.5. They melt congruently at 20 and ?12°C, and incongruently at ?54°C, respectively. The hydrates were further characterized by determination of their structures from single-crystal MoKα diffractometer data. They were found to be oxonium salts. The ionic formulae, in the order of increasing water content, are (H5O2)2SiF6, (H5O2)2SiF6 · 2 H2O, and (H5O2)(H7O3)SiF6 · 4.5 H2O. The structures are governed by extensive O? H ?O and O? H ?F hydrogen bonding. The water structure of the 9.5-hydrate, with the cationic and neutral species taken together, is an unusual three-dimensional network which hydrogen-bonds the anions in channels.  相似文献   

9.
The compound (NH4)2[Re2(HPO4)4 · 2H2O] has been synthesized and characterized by electronic and vibrational spectroscopy. The molecular structure has been determined by X-ray diffraction (MoK α radiation, λ = 0.71073 Å). The (NH4)2[Re2(HPO4)4 · 2H2O] coordination units form centrosymmetrical binuclear ordering with each metal atom being coordinated in a distorted octahedron incorporating one rhenium atom, one oxygen atom of the water molecule, and four phosphate oxygen atoms in the equatorial plane. The rhenium-rhenium bond length (2.2207 Å) corresponds to a quadruple bond between the atoms. The [Re2(HPO4)4 · 2H2O]2- complex anions in the crystal are associated through strong hydrogen bonds formed by the phosphate O-H···O groups. The stability of dirhenium(III) tetra-μ-phosphates in aqueous solutions is considered.  相似文献   

10.
AlF3 is a strong Lewis acid and several hydrates of it are known, namely the monohydrate, the trihydrate (of which two polymorphs have been described) and the nonohydrate, which forms in the abundance of water, as well as a more complex fluoride of composition Al0.820.18F2.46(H2O)0.54 whose structure has been related to the ReO3 type. The monohydrate features edge connected [AlF6] octahedra, in the tri- and nonahydrate mixed F/O coordination of aluminum is observed. Here we report on a new aluminium fluoride hydrate, AlF3·6H2O, which could be obtained via ionothermal synthesis in the ionic liquid n-hexyl-pyridinium tetrafluoroborate. The ionic liquid serves in the synthesis of AlF3·6H2O as the reaction partner (fluoride source) and solvent. Overmore it controls the water activity allowing access to the missing AlF3·6H2O. Single-crystal X-ray diffraction analysis of AlF3·6H2O shows that it crystallizes in the anti-Li3Bi-type of structure according to F3[Al(H2O)6] (Fm-3m, a = 893.1(2) pm, Z = 4) featuring hexaaqua aluminium(III) cations and isolated fluoride anions. The compound was further characterized by powder X-ray diffraction, TG/DTA, IR analyses.  相似文献   

11.
A thermal method using differential scanning calorimeter has been applied to aqueous solutions of a series of poly(tetraalkylammonium ethenesulfonates) (R4NPES). It was found that only the salts withR=n-C4H9 andR=i-C5H11 could form stable hydrates having large hydration numbers. The melting point and hydration numbers of these two hydrates were 12.0°C and 30±1 for the (n-C4H9)4NPES hydrate and 16.0°C and 53±2 for the (i-C5H11)4NPES hydrate, respectively. It was concluded that these hydrates were clathrate-like essentially similar to such hydrates as (n-C4H9)4NF·30H2O and (i-C5H11)4NF·40H2O.  相似文献   

12.
《Polyhedron》2002,21(9-10):987-996
Hg(II) and Cd(II) complexes with 2-aminophenol (Amph) and 2-phenylenediamine (Phda) as ligands were prepared and characterized by elemental analysis, electrical conductivity, thermogravimetric analysis (DTA/TG), X-rays, FT-IR and FT-Raman spectra. The complexes formed can be formulated as [M(L)2·nH2O]·mH2O. The electrical conductivity of 0.001 M DMSO solutions revealed the non-electrolytic behavior of the Amph complexes while Phda complexes behave as a 1:2 electrolyte. DTA analysis reveals the presence of two types of water coordinating as aligned and as water of crystallization. ΔEa of the stepwise decomposition was evaluated. X-ray powder diffraction studies on the ligands and their complexes are described. The fundamental frequencies of these complexes have been assigned on the basis of normal coordinate calculations, carried out using a generalized valence force field (GVFF). The proposed assignments are discussed in relation to the group frequencies in structurally related molecules and in terms of the computed potential-energy distributions among the symmetry coordinates.  相似文献   

13.
Iron(III) phosphites, vic. Fe2(HPO3)3·9 H2O, FeH3P2O6·3 H2O, FeH6P3O9·H2O and Fe4H33P15O45·6 H2O were studied by means of powder X-ray, thermographic, IR and UV spectroscopy methods and by measurement of magnetic susceptibility. From the results obtained, and from analogy with phosphites studied earlier, the following structural model can be proposed: in the compounds studied, every iron atom is surrounded by six oxygen atoms of the water molecules and phosphite or, polyorthophosphite anions which form a weak ligand field of approximately octahedral symmetry. In Fe2(HPO3)3·9 H2O, symmetry of the anion is decreased from the point group C3v to the Cs group. This anion is characterised by two bonding distances between phosphorus and oxygen atoms,r PO=1,46 Å andr PO 2=1,50 Å, the respective force constants beingK PO=8.7 mdyn/Å andK PO2=7.1 mdyn/Å. Three types of hydrogen bonds occur in the crystal lattices of the compounds studied. The weakest bond (bond lengthr=2.86–2.88 Å, bond energyE=4.6–5.0 kcal/bond) is formed between molecules of hydrate water, its energy approaching that of the hydrogen bond in liquid water. The stronger hydrogen bond (r=2.67–2.70 Å,E=5.7 to 8.0 kcal/bond) is found between water molecules and phosphite or polyorthophosphite anions. The strongest hydrogen bond (r=2.55–2.64 Å) is formed by polyorthophosphite anions, linking hydroxyl groups to oxygen atoms bound to different phosphorus atoms.  相似文献   

14.
New Compounds in the System CaO/SiO2/CaCl2/H2O The hydrothermal formation of novel calcium silicate hydrates of compositions 5 CaO · 2 SiO2 · CaCl2 · 4 H2O, 5 CaO · 2 SiO2 · CaCl2 · 2 H2O and 4 CaO · 2 SiO2 · CaCl2 · H2O from Ca3SiO5 and mixtures of CaO and SiO2, respectively, in presence of calciumchloride at 200°–350 °C is described. From molybdate-reaction, 29Si MAS NMR, DTA and TG measurements it is concluded that these compounds are based on disilicate anions and are to be interpreted as calcium hydroxide disilicate chlorides.  相似文献   

15.
In present study, a series of rare earth metal oxide (CeO2, Pr2O3, and Nd2O3) nanoparticles have been prepared by sol–gel route using Ce(NO3)3·6H2O, Pr(NO3)3·6H2O and Nd(NO3)3·6H2O, and citric acid as precursor materials. Powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy are employed to characterize the size and morphology of the nano oxide particles. The particles are spherical in shape and the average particle size is of the order of 11–30 nm. Their catalytic activity was measured on the thermal decomposition of ammonium perchlorate and composite solid propellants (CSPs) by thermogravimetry (TG), TG coupled with differential thermal analysis (TG–DTA), and ignition delay measurements. The ignition delays and activation energies are found to decrease when rare earth metal oxide nanoparticles were incorporated in the system. Addition of metal oxide nanoparticles to AP led to shifting of the high temperature decomposition peak toward lower temperature and the burning rate of CSPs was also found to enhance. However, E a activation energy for decomposition was also found to decrease with each catalyst.  相似文献   

16.
A number of products formed in reactions of cobalt(II) salts with monoethanolamine (HEtm) in a neutral medium were synthesized and studied. X-Ray diffraction study showed that the nitrate and acetate form the dimers [Co(HEtm)3][Co(Etm)3](NO3)3 and [Co(HEtm)3][Co(Etm)3](CH3COO)3 · 8H2O, respectively. In chloride solutions, cobalt is partially oxidized to give the trinuclear complex [CoII{CoIII(Etm)3}2]Cl3 · H2Etm · 2H2O. The reaction of the chelate [Co(Etm)3] · 3H2O with nitric acid is accompanied by complete protonation of the coordinated aminoethanolate ions, and the reaction with formic acid involves complete replacement of the coordinated ligand by acid residue anions and water molecules to give the coordination polymer {Co2(μ-HCOO)4(H2O)4} n .  相似文献   

17.
The deaquation reactions of BaCl2·2H2O, BaBr2·2H2O and CoCl2·6H20 were studied by the thermal analysis techniques of thermogravimetry, differential thermal analysis (DTA), and electrical conductivity in the pressure range from one to 170 atm. In general, the effect of pressure on the TG curves increased the Ti and Tf values and also the reaction interval, (Tt—Ti). The DTA curves exhibited splittings into multiple peaks as a result of the increased pressure. These splittings were interpreted as due to the evolution of a liquid water phase followed b  相似文献   

18.
Co3xNi3−3x(PO4)2·8H2O (x = 1, 0.8, 0.6, 0.4, 0.2, and 0) were synthesized via simple wet chemical reaction and energy saving route method. The final decomposition products of hydrates are corresponding anhydrous tri(cobalt nickel) diphosphates. The metal and water contents of the synthesized hydrates were confirmed by AAS and TG/DTG/DTA techniques, respectively. The observed metal and water contents agree well with the formula of the title compounds. The crystal structures and lattice parameters as well as crystallite sizes of the studied compounds were determined using XRD data. The results from XRD and TG/DTG/DTA techniques confirmed that Co3xNi3−3x(PO4)2·8H2O at all ratios were the single phase. The FTIR spectra of studied compounds were recorded and assigned. The thermal behaviours of single and binary tri(cobalt nickel) diphosphate octahydrates were studied for the first time. The morphologies of the studied compounds were investigated by using the SEM technique. The micrographs of all studied compounds exhibited the thin plated morphology. The surface area and the pore size data of anhydrous forms were measured by N2 adsorption at −190 °C according to the BET method. The anhydrous forms of binary metal phosphate at x = 0.8, Co2.4Ni0.6(PO4)2, exhibits the highest surface area and expects to improve the catalytic activity.  相似文献   

19.
Thermogravimetry (TG), derivative thermogravimetry (DTG) and infrared (IR) spectroscopy have been applied to the investigation of the thermal behaviour and structure of the compounds [Cu(2-Clbz)2(nia)2(H2O)2] (I), [Cu(2-Clbz)2(nia)2]·H2O (II), [Cu(2-Brbz)2(nia)2]·2H2O (III), [Cu(2-Brbz)2(nia)2(H2O)] (IV), where 2-Clbz and 2-Brbz?=?2-chloro- and 2-bromobenzoate anions, nia?=?nicotinamide, H2O?=?water molecules. Thermal decomposition of all studied compounds proceeds in three steps. Heating the compounds first results in a release of non-coordinated and/or coordinated water molecules. The final product of thermal decomposition was CuO. The thermal stability of the complexes can be ordered in the sequence: I<IV<III<II. Nicotinamide is coordinated to Cu(II) through the nitrogen atom of the heterocyclic ring. IR data suggest the unidentate coordination of benzoate anions to Cu(II) in complexes I, IV and bidentate coordination in complexes II and III.  相似文献   

20.
The single phase ??-LiZnPO4·H2O was directly synthesized via solid-state reaction at room temperature using LiH2PO4·H2O, ZnSO4·7H2O, and Na2CO3 as raw materials. XRD analysis showed that ??-LiZnPO4·H2O was a compound with orthorhombic structure. The thermal process of ??-LiZnPO4·H2O experienced two steps, which involved the dehydration of one crystal water molecule at first, and then the crystallization of LiZnPO4. The DTA curve had the one endothermic peak and one exothermic peak, respectively, corresponding to dehydration of ??-LiZnPO4·H2O and crystallization of LiZnPO4. Based on the iterative iso-conversional procedure, the average values of the activation energies associated with the thermal dehydration of ??-LiZnPO4·H2O, was determined to be 86.59?kJ?mol?1. Dehydration of the crystal water molecule of ??-LiZnPO4·H2O is single-step reaction mechanism. A method of multiple rate iso-temperature was used to define the most probable mechanism g(??) of the dehydration step. The dehydration step is contracting cylinder model (g(??)?=?1?(1???)1/2) and is controlled by phase boundary reaction mechanism. The pre-exponential factor A was obtained on the basis of E a and g(??). Besides, the thermodynamic parameters (??S ??, ??H ??, and ??G ??) of the dehydration reaction of ??-LiZnPO4·H2O were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号