首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A nanocomposite of MPNS/(Styrene-maleic anhydride) was prepared by the polymerization of methacryloxypropyl nano SiO2 (MPNS), styrene (ST) and maleic anhydride (MA) with benzoyl peroxide (BPO) as initiator in toluene. The prepared samples were characterized by Fourier transform infrared spectroscopy (PT-IR) and transmission electron microscope (TEM). Meanwhile, the nanocomposite was applied as a tanning agent in leather making and the results showed that leather treated with MPNS/SMA nanocomposite has excellent quality.  相似文献   

2.
Carbon nanotubes (CNTs) were prepared using different carrier gases, with ferrocene as the catalyst precusor and acetylene as the carbon source. The effects of ammonia and nitrogen as carrier gases on the structure and morphology of CNTs were investigated. Transmission electron microscope (TEM), high-resolution electron microscope (HRTEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) were employed to characterize the products and the catalyst. Experiment results show that the CNTs grown in N2 gas exhibited cylindrical and tubular structure, while a bamboo-like structure was observed for the CNTs grown in NH3 gas. Moreover, vertically aligned CNTs were obtained on an A12O3 disk when NH3 was used as the carrier gas. The carrier gas also exerted influence on the shape of the catalyst. Based on the theory of active centers of catalysis and combined with the particle shape of the catalyst, a growth model for the vertically aligned CNTs on the substrate is given.  相似文献   

3.
This paper reports a study on the preparation of Ag-clad Au colloidal monolayer films by a combination of colloid self-assembly and liquid phase microwave high-pressure technique. Firstly, monodisperse Au nanoparticles prepared by microwave heating method were assembled onto a quartz slide. Then, these Au colloidal particles on the quartz surface acted as seeds for growing the Ag-clad Au composite particulate films. The obtained particulate films were characterized by UV-Vis spectra and atomic force microscopy. It was found that the thickness of the shell and thus the size of particles in the composite colloidal films could be controlled by deposition of Ag on the preformed Au colloidal particle film in the microwave reaction system, and such films significantly increased the surface-enhanced Raman scattering enhancement (SERS) ability compared with Au colloidal particle films. Their strong enhancement ability may mainly stem from relatively large particle consisting of Ag cladding as well as effective coupling among particles in the Ag-clad Au particle ftlms.  相似文献   

4.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size ofZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl orange.  相似文献   

5.
The formation mechanism of monodisperse polymer latex particles in the emulsifier-free emulsion polymerizationof methyl methacrylate and butyl acrylate with potassium persulfate as initiator was investigated. A multi-step formationmechanism for the monodisperse polymer particles was proposed. The nucleation mechanism is considered to be thecoagulation of the precursor particles by homogeneous nucleation when the primary particles reach a critical size with highsurface charge density and sufficient stability. It had been proved by a special experiment that the early latex particles formedby the coagulation were stable. The primary particles grow by absorbing monomers and radicals in the polymerization systemand then become colloidally unstable again due to the understandable decrease of particle surface charge density, which leadsto the aggregation of the growing particles and the formation of larger latex pedicles therefrom. Aner the nucleation period,the preferential aggregation of the smaller particles in the propagation process leads to the change of the particles towards auniform size and narrower particle size distribution. The coexistence and competition of homogeneous nucleation,coagulation, propagation and aggregation result in the increase of the polydispersity index (U = D_(43)/D_(10)) in the first Stage,then its decrease in the later stage because of the competition of propagation and aggregation, and the gradual formation ofthe monodisperse particles.  相似文献   

6.
Nanosized colloidal platinum was prepared by reduction of H2PtCl6 in methanol-water mixture by refluxing. The particle size and morphology were characterized by transmission electron microscopy and electron diffraction. The influence of polyvinylpyrrolidone (PVP) molecular mass (MM),PVP concentration,and reduction time on platinum particle size was investigated. Small (1-2 nm) Pt particles are formed in the case of PVP with MM=1.2×104. With increasing polymer MM and decreasing polymer concentration,large aggregates from small particles appear. High catalytic activity of the obtained colloidal platinum in hydrogenation of acetylene compounds is shown. The effect of Pt particle size on the catalytic activity was studied.  相似文献   

7.
The interaction of colloidal gold with Taq DNA polymerase (Taq) was investigated in this study. Taq-gold conjugate was formed by adding the enzyme to the colloidal gold solution, as evidenced by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and photon cross correlation spectroscopy measurements. The conjugate was further characterized by transmission electron microscopy. It was found that the Taq-gold conjugate particles were still spherical and well-dispersed. The influence of gold nanoparticles on the bioactivity of Taq was studied by analyzing the yield of the polymerase chain reaction amplification. Results indicated that the enzymatic activity of Taq decreased after interaction with the colloidal gold.  相似文献   

8.
In this study, well-dispersed gold nanoparticles were prepared by using intra-molecular reduction of sodium gold sulfite, without using additional reductants and chloride free. The technical parameters including transformation temperature, pH, and concentration were optimized by the single-factor method as 90 C, pH 1, and 0.01 mmol/L [Na3Au(SO3)2], respectively. The resultant colloidal transmission electron microscopy images (TEM) and UV-vis absorption spectrophotometer spectra were acquired to check their properties, and the results show this kind of colloidal gold is controlled to 6 nm in sizes and has good stability in solution.  相似文献   

9.
Nano-Copper and Cu/UDD (ultradispersed diamond) nanocomposites were separately prepared by reduction of CuCl2 aqueous solution and that doped with 0.7%(weight percent) of ultra-dispersed diamond. The as prepared nano-crystals were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance techniques (EPR). It was found that homogeneous nucleation dominated the aqueous reduction reaction at high concentration and the diameter of nano-copper decreased as the reaction time shortened, yet at lower concentration heterogeneous nucleation predominated and the doped UDD functioned as heterogeneous nucleation. Otherwise large number of free-radicals existed in the nano-composites. Both of nano-copper and Cu/UDD nanocomposites were strong catalysts for AP decomposition, with Cu/UDD being a more effective one. The higher decomposition temperature for AP was 119 ℃ lower than that without catalyst. And the exothermic quantity of decomposition was from 590 J·g-1 to 1 400 J·g-1 by mix 2% of the Cu/UDD nanocomposites.  相似文献   

10.
Although much effort has been focused on the preparation of stable amorphous calcium phosphate (ACP) nanoparticles in aqueous solution, the redispersibility and long-term stability of ACP nanoparticles in aqueous solution remains an unresolved problem. In this work, stable colloidal ACPs were prepared by using an organic bisphosphonate (BP) as a sterically hindered agent in aqueous solution. The harvested calcium phosphate nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). ICP-AES, FTIR and XRD results suggested the particles were ACP. DLS and TEM results indicated that the size of the ACP nanoparticles were in the range of 60 nm with a spherical morphology. The resulting calcium phosphate nanoparticles retained its amorphous nature in aqueous solution for at least 6 months at room temperature due to the stabilizing effect of the organic bisphosphonate. Moreover, the surface of the ACP nanoparticles adsorbed with the organic bisphosphate used showed good redispersibility and high colloid stability both in organic and aqueous solutions.  相似文献   

11.
Aqueous chemical oxidative dispersion polymerizations of pyrrole using PdCl2 oxidant were conducted using water-soluble polymeric colloidal stabilizers in order to synthesize polypyrrole–palladium (PPy–Pd) nanocomposite particles in one step. PPy–Pd nanocomposite particles with number average diameters of approximately 30 nm were successfully obtained as colloidally stable aqueous dispersions, which were stable at least for 7 months, using poly(4-lithium styrene sulfonic acid) colloidal stabilizer. The resulting nanocomposite particles were extensively characterized with respect to particle size, size distribution, colloidal stability, nanomorphology, surface/bulk chemical compositions, and conductivity. X-ray photoelectron spectroscopy indicated the existence of poly(styrene sulfonic acid) colloidal stabilizer on the surface of the nanocomposite particles. Transmission electron microscopy studies confirmed that nanometer-sized Pd nanoparticles were distributed in the PPy matrix.  相似文献   

12.
Core-shell structured Ag/SiO2 nanocomposite has been synthesized by a cyclohexane/Igepal/water reverse micelle system. The spherical nanocomposite particles were washed and concentrated with high performance liquid chromatography (HPLC) to remove the surfactant added during synthesis. Spherical SiO2 micrometer-scale particles were packed in the HPLC column as a stationary phase for the washing and dispersing of Ag/SiO2 nanocomposite particles. Surface modification of Ag/SiO2 nanocomposite particles and SiO2 microspheres with silane coupling agent enhanced the surface charge of the particles and improved the efficiency of washing with HPLC. Well-dispersed Ag/SiO2 stable suspensions were successfully attained in ethanol/water mixed solvents after HPLC washing. The state of dispersion for the Ag/SiO2 nanocomposite suspension was systematically assessed using dynamic light scattering (DLS) and transmission electron microscope (TEM) and spin coat/atomic force microscope (AFM) analyses. The mechanism of the enabling HPLC washing protocol for SiO2-based nanoparticles is discussed.  相似文献   

13.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

14.
1 Introduction In recent literature, several processes have been de-scribed to synthesize particles that consist of an inor-ganic core surrounded by a polymer shell. The tech-nique of polymer encapsulation is becoming more and more popular since polymer-e…  相似文献   

15.
Organic nano-silica was firstly synthesized by sol-gel method with methyl methacrylate (MMA) and butyl acrylate (BA) in the micelles as dispersing media, tetraethoxysilicate (TEOS) as precursor, hydrochloric acid as catalyst and methacryloylpropyl trimethoxysilane (A174) as modifier. Subsequently, the nano-silica/polyacrylate composite emulsions were directly prepared by in-situ emulsion polymerization under the action of the initiator. The structure and properties were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light-scattering (DSL), thermogracvimetry (TG) and transmission electron microscopy (TEM). The results showed that A174-modified nano-silica was successfully synthesized in the acrylate-based emulsions by the sol-gel method. The nano-silica was encapsulated by polyacrylate, and the composite latex particles exhibited an apparent core-shell structure. The A174 could improve the lipophilicity of nano-silica and increase the grafting efficiency of polyacrylate on nano-silica particles. The nano-silica/polyacrylate composite latex film had better thermal stability, and the composite latex particles had greater average size and broader size distribution in contrast to those of pure polyacrylate emulsions.  相似文献   

16.
The internal nanomorphologies of two types of vinyl polymer-silica colloidal nanocomposites were assessed using electron spectroscopy imaging (ESI). This technique enables the spatial location and concentration of the ultrafine silica sol within the nanocomposite particles to be determined. The ESI data confirmed that the ultrafine silica sol was distributed uniformly throughout the poly(4-vinylpyridine)/silica nanocomposite particles, which is consistent with the "currant bun" morphology previously used to describe this system. In contrast, the polystyrene/silica particles had a pronounced "core-shell" morphology, with the silica sol forming a well-defined monolayer surrounding the nanocomposite cores. Thus these ESI results provide direct verification of the two types of nanocomposite morphologies that were previously only inferred on the basis of X-ray photoelectron spectroscopy and aqueous electrophoresis studies. Moreover, ESI also allows the unambiguous identification of a minor population of polystyrene/silica nanocomposite particles that are not encapsulated by silica shells. The existence of this second morphology was hitherto unsuspected, but it is understandable given the conditions employed to synthesize these nanocomposites. It appears that ESI is a powerful technique for the characterization of colloidal nanocomposite particles.  相似文献   

17.
纳米二氧化硅包覆颜料黄的研究   总被引:3,自引:0,他引:3  
采用静电自组装技术成功地将纳米二氧化硅粒子包覆在颜料黄的表面.研究结果表明,预吸附的聚电解质层数显著影响纳米二氧化硅的吸附量.随着包覆二氧化硅层数的增加,覆盖率逐渐增加,但包覆三层二氧化硅后,覆盖趋于平衡.吸附的纳米二氧化硅不仅可以提高颜料黄的亲水性,而且还能够散射紫外线,尤其是波长小于270nm的紫外线,提高了颜料黄的耐候性,同时又不影响颜料黄本身的颜色.  相似文献   

18.
This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".  相似文献   

19.
A new preparation method for porous silica particles was developed using activated silica sols which are called nano-silica solutions in this paper. Several kinds of organic and inorganic acids are employed to neutralize diluted sodium silicate solutions to form the nano-silica solutions: formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, dl-malic acid, citric acid, and tricarballylic acid as carboxylic acids, and sulfuric acid and hydrochloric acid as inorganic acids. The effect of salts in the nano-silica solution is also studied. The products were investigated using a field emission scanning electron microscope, an X-ray diffractometer, the nitrogen adsorption technique, and a mercury porosimeter. Microporous silicas were produced when carboxylic acids were applied; the formation of micropores was influenced by the pH of the nano-silica solutions and molecular sizes of the carboxylic acids. Addition of a salt in a citric acid solution increased the mesopore volume. Macropores were formed when inorganic acids including salts were applied; the salt nanoparticles which were crystallized in silica spheres acted as templates. The anion types and salt concentrations in the nano-silica solutions affected the aggregation condition of silica nanoparticles, following the Schulze-Hardy rule.  相似文献   

20.
采用硅烷偶联剂4-氯苄基三氯硅烷对二氧化硅颗粒表面进行改性, 制得表面接枝氯苄基的亲油二氧化硅颗粒. 在亲油二氧化硅颗粒表面继续接枝亲水性的十二烷基咪唑, 即可制得含有离子液体基团的双亲性二氧化硅颗粒. 通过静电吸附氯铂酸和硼氢化钠还原, 可在两亲性二氧化硅颗粒表面负载铂纳米颗粒, 从而得到双亲性二氧化硅颗粒催化剂. 用扫描电镜、 透射电镜、 X射线衍射和红外光谱等对所得样品进行表征, 并以苯甲醇氧化反应为研究对象对催化剂性能进行评价, 结果显示, 使用此催化剂可使苯甲酸的产率达到90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号