首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small signal analysis for the resonant tunneling diode (RTD) is carried out by using a semiclassical transport theory. Multiple scattering effects are accounted for in an optical approximation by using a complex mean free path. An analytical expression for the conduction current is given. The results show that the negative differential conductance prevails up to the frequency f0 limited by the quantum well transit time. The imaginary part of the admittance can be presented by a series inductance as has been recently found experimentally. In addition, the equivalent circuit has a capacitor in parallel with the conductance-inductance branch. Above f0 the admittance shows an oscillatory behaviour. The oscillations are associated with the quantum well transit time resonances.  相似文献   

2.
Taking exact Airy functions and Hermitian functions as envelope functions, we investigate in detail the level width of a quasibound state for electrons coherent resonant tunneling through symmetric and asymmetric double-barrier parabolic-well resonant tunneling structures (DBRT) with the transfer-matrix formalism. It is found that for the symmetric structure and the asymmetric structure with left barrier thicker than the right one, both the level width and the peak value vary monotonously with increasing applied bias, but for the asymmetric DBRT structure with left barrier thinner than the right one, they change nonmonotonously. The nonmonotonous variations of the level width and the peak value reflect the transition of tunneling type (i.e. first from incompletely resonant tunneling to completely resonant tunneling, and then from completely resonant tunneling back to incompletely resonant tunneling). The effects of well width, barrier thickness and barrier height on the level width and the peak value are also inspected.  相似文献   

3.
A general expression for the resonant contribution to a tunneling current has been obtained and analyzed in the tunneling Hamiltonian approximation. Two types of resonant tunneling structures are considered: structures with a random impurity distribution and double-barrier structures, where the resonant level results from size quantization. The effect of temperature on the current-voltage curves of tunneling structures is discussed. The study of the effect of potential barrier profile on the d 2 I/dV 2 line shape is of interest for experiments in inelastic tunneling spectroscopy. Various experimental situations where the inelastic component of the tunneling current can become comparable to the elastic one are discussed. Fiz. Tverd. Tela (St. Petersburg) 40, 1151–1155 (June 1998)  相似文献   

4.
The effects of the off-set energy between the dielectric films which are formed at the both edges of the channel and the Si substrate on the electrical characteristics are examined for the Si resonant tunneling MOST (SRTMOST). The barrier height of the dielectric films has a great influence on the operation of the SRTMOST. The relationship between the transmission coefficient and the off-set energy of the double barrier/Si is calculated as well as the relationships between the gate-off currents, the transition time from the source to the drain and the off-set energy. It was found that the critical off-set energy of dielectric film/Si is approximately 1.0–1.5 eV.  相似文献   

5.
The resonant quantum tunneling current through the barrier between two wells may be maximized when the damp (absorption) in one well matches the barrier parameters. The maximum resonant tunneling current is much greater than the conventional expectation by a factor ofθ (1/θ 2 is the Gamow tunneling factor). It is shown that with all the established quantum mechanics, very much higher reaction probabilities between nuclei in contrary to the Gamow theory can be explained in agreement with experiments. Particularly, the resonance will select the sub-barrier fusion with a suitable fusion rate which matches the barrier parameters. This selective resonant tunneling model is able to explain both the hot fusion data (e.g. the width of resonance in11B(p,α)2α reaction) and the cold fusion data (e.g. “excess heat” without any commensurate neutron andγ radiation). This work is supported by the State Commission of Science and Technology, the Natural Science Foundation of China (Contract #19645005), and the Fundamental Research Fund of Tsinghua University.  相似文献   

6.
We calculate the electron-phonon scattering rate for an asymmetric double barrier resonant tunneling structure based on dielectric continuum theory, including all phonon modes, and show that interface phonons contribute much more to the scattering rate than do bulk-like LO phonons for incident energies which are approximately within an order of magnitude of the Fermi energy. The maximum scattering rate occurs for incident electron energies near the quantum well resonance. Subband nonparabolicity has a significant influence on electron-phonon scattering in these structures. We show that the relaxation time is comparable to the dwell time of electrons in the quantum well for a typical resonant tunneling structure. Received: 23 December 1997 / Revised: 24 March 1998 / Accepted: 9 March 1998  相似文献   

7.
The effect of properly lined-up quantum-well (QW) states, under an external bias, on the electron resonant tunneling is investigated in an InAlAs/InGaAs triple-barrier structure. The degree of alignment of two QW confined ground states at a resonant voltage is analyzed with low-temperature measurement. The experimental data shows the enhanced resonant tunneling effects, and proves that the second QW structure added to the InGaAs/ InAlAs double-barrier heterostructure can act as an effective tool for probing and extracting the resonant tunneling properties deep in a QW.  相似文献   

8.
A lateral resonant tunneling FET (RTFET) is proposed. The RTFET has three closely spaced gates. The outer gates control the barrier heights, and the inner gate controls the potential of the quantum well. These gates are capacitively coupled to the barriers and the well, therefore, the gate currents are very small. Modeling and computer simulation show that the RTFET should have an improved peak-to-valley ratio, narrower current peak widths, and more uniform distribution of peak currents than that of a conventional resonant tunneling diode with the same structure. Furthermore, a unique feature of this device is that the barrier height can be adjusted, which allows the current peak, the peak-to-valley ratio, and the peak positions to be tuned.  相似文献   

9.
In electron resonant tunneling through a double barrier structure, we show that dynamical electron-electron interactions in the resonant well can give rise to additional tunneling satellites due to collective electronic excitations. We present a first principle treatment for frequency-dependent electron-electron interactions in the resonant tunneling problem. The result confirms the previously proposed plasmon assisted resonant tunneling mechanism. We also find that the particle-hole excitation has very little effect on resonant tunneling. Our result can be applied to study the effects of various electronic excitations on the resonant tunneling of electrons.  相似文献   

10.
We have calculated the potential profile and the electronic levels in resonant tunneling double barrier structures with nanometric lateral dimensions (≤ 500 nm) for various contact doping. At biases for which the box states (laterally confined quantum well) are resonant with the emitter Fermi level, fine structures are expected in the resonant tunneling current. Comparison with I(V) characteristics measured on nanometric GaAs/GaAlAs and GaAs/GaAlAs/InGaAs resonant tunneling diodes shows that our model accounts for the resonance bias voltage and explains the shape of the current peak. The fine structure observed in the current peak provides a spectroscopy of the confined states in the quantum box.  相似文献   

11.
马瑞琼  时坚  刘琳  梁猛  段作梁  高伟  董军 《中国物理 B》2022,31(2):24202-024202
An N-stage three-waveguide system is proposed to improve the robustness and the fidelity of the resonant tunneling passage.The analytic solutions to the tunneling dynamics at the output are derived.When the number of subsystems increases,tunneling efficiency approaches to 100%in a large range and resonant tunneling is robust against variations in the phase mismatch and peak tunneling rate.  相似文献   

12.
We present fermionic model based on symmetric resonant tunneling heterostructure, which demonstrates spontaneous symmetry breaking in respect to combined operations of space inversion (P) and time reversal (T). PT-symmetry breaking manifests itself in resonance coalescence (collapse of resonances). We show that resonant energies are determined by eigenvalues of auxiliary pseudo-Hermitian PT-invariant Hamiltonian.  相似文献   

13.
Using the transfer matrix method and the effective-mass approximation, the effect of resonant states on spin transport is studied in ZnSe/ZnMnSe/ZnSe/ZnMnSe/ZnSe structures under the influence of both electric and magnetic fields. The numerical results show that the ZnMnSe layers, which act as spin filters, polarize the electric currents. Variation of thickness of the central ZnSe layer shifts the resonant levels and exhibits an oscillatory behavior in spin current densities. It is also shown that the spin polarization of the tunneling current in geometrical asymmetry of the heterostructure where two ZnMnSe layers have different Mn concentrations, depends strongly on the thickness and the applied bias.  相似文献   

14.
The concept of a resonant tunneling photonic nanotriode that allows the mutual all-optical control of cross-cut light flows is developed. The concept is based on the strong resonant interaction between the quasi-localized eigenmode of nonlinear planar dielectric waveguides and incident beams. It is demonstrated that small variations of input guided wave intensities may result in deep modulation of beam reflection and transmission coefficients.  相似文献   

15.
We propose a simple quantum structure which exhibits resonant tunneling under one bias and simple tunneling under the opposite one, thus acting as a rectifier. The diode consists of a single laterally-indented barrier. Due to its particular conduction-band profile, electrons undergo resonant tunneling when the bias creates a band-profile triangular well which can contain a resonant state aligned to the emitter Fermi energy. A diode with an active layer of ≈ 100Å, realized by AlGaAs/GaAs, has a Rectification Ratio, calculated at the current-peak bias at resonance, of ≈ 100. This value can be enhanced by putting in series several elements of this kind.  相似文献   

16.
We show analytically and by numerical simulations that the conductance through pi-biased chaotic Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic number of low-energy quasidegenerate Andreev levels.  相似文献   

17.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from +1 to −1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current.  相似文献   

18.
We experimentally studied the photocurrent of AlAs/GaAs/AlAs double barrier resonant tunneling diode (RTD), which is composed of an InAs layer of self-assembled quantum-dots on top of AlAs barrier layer. It is found that the charging InAs quantum dots can effectively modulate the carrier transport properties of the RTD. Moreover, we also found that the resonant tunneling current through a single energy level of an individual quantum dot is extremely sensitive to the photo-excited holes bound nearby the dot, and the presence of the holes lowers the electrostatic energy of the quantum dot state. In addition, it is also observed that the photocurrent behaves like step way with the individual photon pulse excitation when the illumination is low enough. The experiment results well demonstrated the quantum amplified characteristics of the device.  相似文献   

19.
The paper aims at understanding the tunneling process in epitaxial magnetic tunnel junctions. Firstly, we stress the importance of the complex band structure of the insulator for the tunneling of the metal electrons. For large insulator thicknesses the tunneling current is carried by very few states, i.e., those states in the gap of the semiconductor having the smallest imaginary component of the k-vector. In the case of GaAs, ZnSe and MgO these are Δ1-states at the -point. Secondly, we discuss the role of resonant interface states for tunneling. Based on simple model calculations and ab initio results we demonstrate that for symmetrical barriers the minority conductance can be dominated in an intermediate thickness range by few ‘hot spots’ in the surface Brillouin zone, arising from resonant interface states. In these hot spots full transmission can still be obtained, when all other states are already strongly attenuated, so that the usual exponential decay can be considerably delayed.  相似文献   

20.
An accumulation layer is formed on the emitter side of a biased resonant tunneling diode (RTD) leading to a similar subband structure as in the ordinary MOS-system. Electrons occupying the subbands can tunnel through the RTD-structure and give rise to a significant contribution to the diode current. We calculate the subband current from our semiclassical transport model developed earlier for the ordinary tunneling current. The model includes quantum interference and bulk scattering by utilizing an optical approximation for the coherent part of the wave function. The subband current turns out to be of the same order of magnitude as the ordinary tunneling current component. It is shifted to higher voltages and therefore it increases the valley current. In order to reduce the subband current and improve the peak-to-valley current ratio (PVCR), we propose a novel RTD-structure with a grading in front of the emitter barrier. The purpose of the grading is to suppress the formation of the accumulation layer and thereby decrease the valley current. Calculations show that PVCR increases by a factor of two using a proper design of the grading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号