首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an investigation of the interface quality of the Al0.2Ga0.8As/GaAs triple quantum wells (QWs) grown on the GaAs substrates 0° and 6° off (100) towards 〈111〉A at a high CO environment, using the photoluminescence technique. The direct correlation between the quantum well quality and the performance of lasers which contain such quantum wells as an active region is also reported. It is found that impurity-related photoluminescence is observed only in the sample grown on the exact (100) GaAs substrate but not in the tilted one, as confirmed by temperature dependence results. The full width at half maximum (FWHM) of the intrinsic luminescence is as high as 9.0 meV in the 0° tilted samples and decreases to 3.10 meV in the samples misoriented 6°, indicating a remarkable difference in their interface quality. The impurities incorporated into the interfaces of the QWs are carbon, incorporation of which becomes unobservable by photoluminescence when the quantum wells are grown on substrates misoriented by 6° degrees. The threshold current and quantum efficiency of the laser devices with Al0.2Ga0.8As/GaAs quantum wells as their active region are found to be directly related to the interfacial quality of the quantum wells.  相似文献   

2.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

3.
We report the effects of growth conditions on the superconducting properties of FeSe films epitaxially grown on LaAlO3 substrates by pulsed laser deposition (PLD). Customary materials characterization techniques [X-ray diffraction (XRD), in-situ X-ray photoelectron spectroscopy (XPS), in-situ ultra-violet photoelectron spectroscopy (UPS), and scanning electron microscopy (SEM)] revealed the films had a c-axis oriented tetragonal structure with lattice constants dependent on the growth temperature (varied from 100 to 600°C). The standard four-point probe method was used to measure the resistivity and superconducting transitions. Films grown at 400–550°C showed a clear superconducting onset but no zero resistance down to 2 K. The highest superconducting onset temperature (TconsetT_{\mathrm{c}}^{\mathrm{onset}}) of 8 K was observed in films grown at 500°C and the onset temperature was clearly correlated to the ratio of the lattice constants (c/a). As the thickness of the FeSe films increased from 27 nm to 480 nm, TconsetT_{\mathrm{c}}^{\mathrm{onset}} also increased as the strain in the system was relaxed.  相似文献   

4.
In this paper, the results of Hg1−xZnxTeCdTe strained layer superlattices grown by MBE are reported, and compared to Hg1−xCdxTeCdTe superlattices. Both Type III and Type I Hg1−xZnxTeCdTe superlattices with different strain have been grown on CdTe(111)B/GaAs(100) and CdTe(100)/GaAs(100) substrates and characterized by electron, X-ray diffraction, infrared transmission and Hall measurements. The values of hole mobility between 5×103 up to 2×104cm2v−1s−1 at T = 23K along (111)B growth orientation and up to 4.9×104cm2v−1s−1 at T = 5K along (100) growth orientation are obtained for Type III superlattices whereas in Type I superlattices, the hole mobility is between 200–300cm2v−1s−1. This drastic change in the hole mobility between Type III and Type I superlattices along with the role of the strain are discussed in this paper.  相似文献   

5.
In this paper, metamorphic growth of GaAs on (001) oriented Si substrate, with a combination method of applying dislocation filter layer (DFL) and three-step growth process, was conducted by metal organic chemical vapor deposition. The effectiveness of the multiple InAs/GaAs self-organized quantum dot (QD) layers acting as a dislocation filter was researched in detail. And the growth conditions of the InAs QDs were optimized by theoretical calculations and experiments. A 2-μm-thick buffer layer was grown on the Si substrate with the three-step growth method according to the optimized growth conditions. Then, a 114-nm-thick DFL and a 1-μm-thick GaAs epilayer were grown. The results we obtained demonstrated that the DFL can effectively bend dislocation direction via the strain field around the QDs. The optimal structure of the DFL is composed of three-layer InAs QDs with a growth time of 55 s. The method could reduce the etch pit density from about 3 × 106 cm?2 to 9 × 105 cm?2 and improve the crystalline quality of the GaAs epilayers on Si.  相似文献   

6.
Thin iron films have been grown on (001) GaAs substrates by low pressure metal organic chemical vapor deposition (LP-MOCVD) at different temperatures with the pressure of 150 Torr. X-ray diffraction (XRD) analysis showed that all films have only one strong diffraction peak (110). The surface of Fe film became smooth with increasing the growth temperature. Magnetization measurements showed that the Fe films grown at different temperatures were ferromagnetic with easy axis parallel to the film surface and hard axis perpendicular to the substrates. The field dependence of magnetization along two axes showed a remarkable difference, implying that the samples have strong magnetic anisotropy. Furthermore, when the applied magnetic field is perpendicular to the Fe surface, a sharp jump in the hysteresis loop could be observed, followed by a broad shoulder, which is related to the interface effect, the existence of carbon and the formation of 180°/90° magnetic domains.  相似文献   

7.
A 59Co NMR study has been carried out on several series of co-evaporated Co1-xFex thin-film alloys prepared on MgO (001), GaAs (100), and GaAs (110) substrates at deposition temperatures between 175°C and 500°C. The sample thicknesses varied between 100 Å and 1000 Å and the alloy concentrations were in the range 0:1 < x < 0:3. X-ray diffraction and NMR show that the stability limits of the bcc phase in CoFe alloys is shifted from the x = 0:25 observed in the bulk alloys down to about x = 0:11 in thin films. For x = 0:27 and at the deposition temperature of 500°C, a new ordered phase has been stabilised where Co has two Fe atoms only in its first coordination shell. Other samples, grown at lower temperatures, also exhibit an exotic chemical short range order (CSRO) where Co coordinations with zero and two Fe neighbours dominate. A mixture of bcc Co (and not fcc Co as in the bulk alloys) and unknown ordered bcc intermetallics can account for the observed CSRO. Theoretical ground-state phases for the bcc lattice are considered in order to explain the observations.  相似文献   

8.
SiO x H y C z nanometric layers are deposited from hexamethyldisiloxane by atmospheric pressure microwave plasma torch on Si(100) substrates submitted to temperatures varying on the range [0 °C; 120 °C]. Atomic force microscopy (AFM) characterizations of samples grown at intermediate substrate temperatures (~30 °C) demonstrate a layer-by-layer growth (Frank van der Merwe growth) leading to smooth flat and compact films while films deposited at lower and higher substrates temperatures show an island-like growth (Volmer-Weber growth) generating a high surface roughness. Concomitantly, a detailed infrared spectroscopy analysis of the growing films evidences structural modifications due to changes in the bond types, Si-O-Si conformation and stoichiometry correlated with scanning electron microscopy and AFM characterizations. Then, deposition conditions and specific microstructure are selected with the aim of generating 3-dimensional SiO x H y C z nanostructure arrays on nanoindented Si (100) templates. The first results are discussed.  相似文献   

9.
We used photoluminescence spectroscopy in order to investigate the carriers escape mechanisms in In0.15Ga0.85As/GaAs quantum wells grown on top of nominal (001) and 2°-, 4°- and 6°-off (001) towards (111)A GaAs substrates. We described the escape processes using two models that fit the Arrhenius plot of the integrated PL intensity as a function of the inverse of the sample temperature. In the first model, we considered equal escape probability for electrons and holes. In the second one, we assumed that a single type of carrier can escape from the well. At high temperature, the first model fits the experimental data well, whereas, between 50 K and 100 K, the second model has to be taken into account to describe the data. We observed that the escape activation energy depends on the misorientation angle. An unusual behavior was noted when the full width at half maximum of the photoluminescence main emission was plotted as a function of the sample temperature. We showed that the escape process of the less-confined carriers drives this behavior.  相似文献   

10.
本文以反射式高能电子衍射(RHEED)和其强度振荡为监测手段,在半绝缘GaAs衬底上成功地生长GaSb/AlSb/GaAs应变层结构,RHEED图样表明,GaSb正常生长时为Sb稳定的C(2×6)结构,AlSb为稳定的(1×3)结构,作者观察并记录GaSb,AlSb生长时的RHEED强度振荡,并利用它成功地生长10个周期的GaSb/AlSb超晶格,透射电子显微镜照片显示界面平整、清晰,采用较厚的AlSb过渡层及适当的生长条件,可在半绝缘GaAs衬底上生长出质量好的GaSb外延层,其X射线双晶衍射半峰宽小于 关键词:  相似文献   

11.
杨光  Santos Paulo V. 《物理学报》2007,56(6):3515-3520
通过射频磁控溅射技术在GaAs,Au/GaAs,Si和玻璃基片上成功制备了ZnO多晶薄膜,利用X射线衍射对ZnO薄膜的取向、结晶性进行了表征,结果表明ZnO薄膜呈完全c轴取向,Au缓冲层可以有效地改善ZnO薄膜的晶体质量,X射线摇摆曲线结果表明ZnO(002)衍射峰的半高宽仅为2.41°,同时发现Au缓冲层的结晶质量对ZnO薄膜的c轴取向度有很大影响,通过扫描电子显微镜对ZnO/GaAs和ZnO/Au/GaAs薄膜的表面形貌进行了观测,利用网络分析仪对IDT/ZnO/GaAs薄膜的声表面波特性进行了测量. 关键词: ZnO薄膜 X射线衍射 声表面波  相似文献   

12.
Abstract

Crystal defects, present in ~100 nm GaAs nanocrystals grown by metal organic vapour phase epitaxy on top of (0 0 1)-oriented Si nanotips (with a tip opening 50–90 nm), have been studied by means of high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The role of 60° perfect, 30° and 90° Shockley partial misfit dislocations (MDs) in the plastic strain relaxation of GaAs on Si is discussed. Formation conditions of stair-rod dislocations and coherent twin boundaries in the GaAs nanocrystals are explained. Also, although stacking faults are commonly observed, we show here that synthesis of GaAs nanocrystals with a minimum number of these defects is possible. On the other hand, from the number of MDs, we have to conclude that the GaAs nanoparticles are fully relaxed plastically, such that for the present tip sizes no substrate compliance can be observed.  相似文献   

13.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

14.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

15.
The acceptor doping of mercury cadmium telluride (HgCdTe) layers grown by MOCVD are investigated. (111)HgCdTe layers were grown on (100)GaAs substrates at 350°C using horizontal reactor and interdiffused multilayer process (IMP). TDMAAs and AsH3 were alternatively used as effective p-type doping precursors. Incorporation and activation rates of arsenic have been studied. Over a wide range of Hg1−xCdxTe compositions (0.17 < x < 0.4), arsenic doping concentration in the range from 5×1015 cm−3 to 5×1017 cm−3 was obtained without postgrowth annealing. The electrical and chemical properties of epitaxial layers are specified by measurements of SIMS profiles, Hall effect and minority carrier lifetimes. It is confirmed that the Auger-7 mechanism has decisive influence on carrier lifetime in p-type HgCdTe epilayers.  相似文献   

16.
A parametric study of the growth of La0.5Sr0.5CoO3 (LSCO) thin films on (100) MgO substrates by pulsed-laser deposition (PLD) is reported. Films are grown under a wide range of substrate temperature (450–800 °C), oxygen pressure (0.1–0.9 mbar), and incident laser fluence (0.8–2.6 J/cm2). The optimum ranges of temperature, oxygen pressure, and laser fluence to produce c-axis oriented films with smooth surface morphology and high metallic conductivity are identified. Films deposited at low temperature (500 °C) and post-annealed in situ at higher temperatures (600–800 °C) are also investigated with respect to their structure, surface morphology, and electrical conductivity. Received: 20 November 1998 / Accepted: 6 July 1999 / Published online: 21 October 1999  相似文献   

17.
Iron films have been grown on (1 1 0) GaAs substrates by atmospheric pressure metalorganic chemical vapor deposition at substrate temperatures (Ts) between 135°C and 400°C. X-ray diffraction (XRD) analysis showed that the Fe films grown at Ts between 200°C and 330°C were single crystals. Amorphous films were observed at Ts below 200°C and it was not possible to deposit films at Ts above 330°C. The full-width at half-maximum of the rocking curves showed that crystalline qualities were improved at Ts above 270°C. Single crystalline Fe films grown at different substrate temperature showed different structural behaviors in XRD measurements. Iron films grown at Ts between 200°C and 300°C showed bulk α-Fe like behavior regardless of film thickness (100–6400 Å). Meanwhile, Fe films grown at 330°C (144 and 300 Å) showed a biaxially compressed strain between substrate and epilayer, resulting in an expanded inter-planar spacing along the growth direction. Magnetization measurements showed that Fe films (>200 Å) grown at 280°C and 330°C were ferromagnetic with the in-plane easy axis along the [1 1 0] direction. For the thinner Fe films (⩽200 Å) regardless of growth temperature, square loops along the [1 0 0] easy axis were very weak and broad.  相似文献   

18.
Half-metallic MnAs and MnP layers were grown on GaAs substrates by the laser sputtering of a metal Mn target in a hydrogen and arsine (phosphine) flow. The effect of the arsine concentration in the gascarrier and the substrate temperature (T g = 300—450°C) on the crystal structure and electrical and magnetic properties were determined. It was shown that MnP samples grown at T g 400°C exhibit ferromagnetic properties up to 300 K, according to Hall effect measurements.  相似文献   

19.
We report optimized photoluminescence of ZnSe nanowires grown by molecular beam epitaxy, obtained by lowering the growth temperature down to 300 °C. The low‐temperature growth method has been developed using Si(111) and GaAs(111)B substrates. On the latter, vertical oriented blue‐emitting nanowires have been obtained. The growth mecha‐ nism is discussed with the help of in‐situ and ex‐situ electronic and structural measurements. We also report strong blue luminescence from ZnSe nanowires grown on ITO‐coated glasses, demonstrating that ZnSe nanowires are optimal candidates for transparent optoelectronics. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The electrical properties of cadmium, zinc, and sulfur ion-implanted layers in gallium arsenide have been measured by the van der Pauw-Hall technique. Ion implantation was performed with the substrates held at room temperature. The dependence of sheet resistivity, surface carrier concentration, and mobility on ion dose and on post-implantation anneal temperature was determined. In the case of 60 keV Cd+ ions implanted into n-type substrates, a measurable p-type layer resulted when samples were annealed for 10 minutes at a temperature in the range 600—900°C. After annealing at 300—900°C for 10 minutes, 100 per cent electrical activity of the Cd ions resulted for ion doses ≤ 1014/cm2.

The properties of p-type layers produced by implantation of 85 keV Zn+ ions were similar to those of the 60 keV cadmium-implanted layers, in that no measurable p-type behavior was observed in samples annealed below a relatively high temperature. However, in samples implanted with 20 keV Zn+ ions a p-type layer was observed after annealing for 10 minutes at temperatures as low as 300°C.

Implantation of sulfur ions into p-type GaAs substrates at room temperature resulted in the formation of a high resistivity n-type layer, evcn before any annealing was performed. Annealing at temperatures up to 200°C or above 600°C lowered the resistivity of the layer, while annealing in the range 300—500°C eliminated the n-type layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号