首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated transport in Nb-InAs hybrid structures in perpendicular magnetic fields up to the quantum Hall regime. Due to the high contact quality of our samples, Andreev reflection dominates the transport properties in a range of experimental parameters. Our experiments were performed on periodic arrays of Nb filled stripes or antidots in an InAs-based 2DEG. According to geometry and field strength we observe the following effects: At low fields, up to a few flux quanta per unit cell, we find phase-coherent behavior, such as flux-periodic oscillations. At slightly higher fields, the Andreev reflection probability is determined by induced superconductivity in the 2DEG, which is gradually suppressed by an increasing magnetic field. In the arrays of Nb filled antidots we find that the commensurability peaks are suppressed since Andreev reflection restores regular motion in velocity space. Due to the high critical field of the Nb nanostructures, we can also enter the edge state regime, where we observe a pronounced increase of the amplitude of 1/B-periodic magnetoresistance oscillations. The latter can be traced to an enhanced backscattering of Andreev-reflected edge channels, which contain both electrons and holes. PACS 74.45.+c; 73.43.Qt; 73.63.-b  相似文献   

2.
We have performed systematic investigations of the Coulomb blockade oscillations observed in a single quantum dot defined in the plane of a two-dimensional electron gas. At high magnetic fields these oscillations reflect the inner electronic structure of the dot, showing both a significant periodic amplitude modulation as well as a systematic variation of the conductance oscillation period. The former results from the modulation of the coupling of the electronic states in the dot with the leads, and can be readily explained within an activated transport model. The latter effect reflects the detailed electronic structure of the quantum dot and permits a comparison with the structure calculated within a simple capacitance model. The experimental results are in excellent qualitative agreement with the theoretical model, however a detailed quantitative comparison must include both the additional coupling of the dot to its environment as well as the gate voltage dependence of the dot structure itself.PACS: 73.20.Dx; 72.20. My.  相似文献   

3.
Magnetoconductance of a small open lateral dot is studied both theoretically and experimentally for the conditions when the dot contains down to 15 electrons. We confirm the existence of a new regime for open dots in which the transport through the structure occurs through individual eigenstates of the corresponding closed dot. In particular, at low magnetic fields the characteristic features in the conductance are related to the underlying eigenspectrum shells. When the number of modes in the leads is reduced more detailed structures within the shells due to single eigenlevels becomes discernible. At higher fields Landau level condensation is evident as well as the crossing of levels collapsing to the different Landau levels.  相似文献   

4.
We investigate electronic transport in dual-gated twisted-bilayer graphene. Despite the subnanometer proximity between the layers, we identify independent contributions to the magnetoresistance from the graphene Landau level spectrum of each layer. We demonstrate that the filling factor of each layer can be independently controlled via the dual gates, which we use to induce Landau level crossings between the layers. By analyzing the gate dependence of the Landau level crossings, we characterize the finite interlayer screening and extract the capacitance between the atomically spaced layers. At zero filling factor, we observe an insulating state at large displacement fields, which can be explained by the presence of counterpropagating edge states with interlayer coupling.  相似文献   

5.
The magnetoresistance of thin cylindrical Ag films (0 ⋍ 1.2 μm) in the weakly localized regime has been investigated between 1.3 K and 4.2 K in longitudinal magnetic fields up to 0.3 T. The measurements were carefully analyzed in terms of the recent theories of weak localization. The observed magnetoresistance oscillations are periodic in the magnetic flux quantum h/2e and in excellent agreement with the Altshuler-Aronov-Spivak theory.  相似文献   

6.
Two-dimensional quantum transport through the stripe of the hexagonal lattice of antidots built in the multimode channel in the GaAs/AlGaAs structure has been studied numerically. It has been found that the low perpendicular magnetic fields (~3 mT) suppress the bulk currents and cause the appearance of the edge Landau states and high positive magnetic resistance on both sides of the Dirac point. Tamm edge states are present in some energy intervals; as a result, the 4e 2/h-amplitude oscillations caused by the quantization of these states on the lattice length are added to the steps of the conductance quantization G n = (2|n| + 1)2e 2/h.  相似文献   

7.
The galvanomagnetic properties of p-type bismuth telluride heteroepitaxial films grown by the hot wall epitaxy method on oriented muscovite mica substrates have been investigated. Quantum oscillations of the magnetoresistance associated with surface electronic states in three-dimensional topological insulators have been studied in strong magnetic fields ranging from 6 to 14 T at low temperatures. The cyclotron effective mass, charge carrier mobility, and parameters of the Fermi surface have been determined based on the results of analyzing the magnetoresistance oscillations. The dependences of the cross-sectional area of the Fermi surface S(k F), the wave vector k F, and the surface concentration of charge carriers n s on the frequency of magnetoresistance oscillations in p-type Bi2Te3 heteroepitaxial films have been obtained. The experimentally observed shift of the Landau level index is consistent with the value of the Berry phase, which is characteristic of topological surface states of Dirac fermions in the films. The properties of topological surface states of charge carriers in p-type Bi2Te3 films obtained by analyzing the magnetoresistance oscillations significantly expand fields of practical application and stimulate the investigation of transport properties of chalcogenide films.  相似文献   

8.
We use a quasi-Corbino sample geometry with independent contacts to different edge states in the quantum Hall effect regime to investigate the edge energy spectrum of a bilayer electron system at a total filling factor of ν=2. By analyzing nonlinear I–V curves in normal and tilted magnetic fields, we conclude that the edge energy spectrum is in a close connection with the bulk one. At the bulk phase transition spin-singlet-canted antiferromagnetic phase, the I–V curve becomes linear, indicating the disappearance or strong narrowing of the ν=1 incompressible strip at the edge of the sample.  相似文献   

9.
We report on a theoretical study of radiation‐induced resistance oscillations and zero‐resistance states in two‐dimensional electron systems when the irradiation frequency is very low. In this situation the photon energy is much smaller than the spacing between the Landau levels and therefore interlevel transitions are excluded. Experiments show that when these frequencies are used, resistance oscillations disappear and, instead, a strong suppression of magnetoresistance response is obtained. We apply the radiation‐driven electron orbit model concluding that the resistance suppression is a manifestation of an oscillation of very large wavelength. Under this regime we study the connection with larger frequencies and the dependence on radiation power and temperature. For high enough radiation intensity, we predict that a regime of zero‐resistance states can be reached at these low frequencies, too. The calculated results are in good agreement with experiments. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have performed a full numerical calculation of the Franz--Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial value method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.  相似文献   

11.
The influence of a dc electric current I dc on the low-temperature magnetotransport of high-mobility electrons in a GaAs double quantum well with two occupied size-quantization levels has been studied. The oscillations of the resistance ρ xx , which are periodic in the inverse magnetic field, have been shown to appear in the quasitwo-dimensional system under consideration at a temperature of T = 4.2 K in magnetic fields B > 0.1 T; the oscillations are caused by isoenergetic resonance transitions of the electrons between the Landau levels of different subbands. The inversion of the oscillations with an increase in I dc has been discovered. It has been found that the observed effect is due to the electron transport in a nonlinear regime.  相似文献   

12.
We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coherence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative magnitude of their separation and the temperature. We analyze both regimes in the strong and weak tunneling amplitude limits as well as their temperature dependence. We find that the tunneling conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling amplitudes with the same period but with different functional form.  相似文献   

13.
The transverse magnetoresistance of (TMTSF)2ClO4 has been investigated in magnetic fields as high as 32T, at low temperature down to 2.4 K. On the magnetoresistance, in relaxed state (R state), we observed many oscillations periodic in 1/B in a temperature range from 2.4 to 12 K, together with slope changes induced by phase transitions. At low temperature two series at the same frequency are observed, interpreted by the presence of equal area electron and hole pockets.  相似文献   

14.
We report a study of spin-related magnetotransport properties of a type II broken-gap heterostructure formed by InAs substrate bulky doped with Mn and δ-Mn-doped GaInAsSb epilayer. Planar and vertical quantum magnetotransport in a 2D-electron-hole system at the single type II broken-gap InAs/GaInAsSb heterointerface was investigated in high magnetic fields under the quantum Hall regime up to 15 T at low temperature (T=1.5 K). The I-V characteristics near the dielectric phase boundary show the step-like behavior that corresponds to the quantum conductance in a disordered 2D structure through the extended edge states of the nearest Landau level closest to the Fermi level. The value of these steps is determined by the orientation of the 2D-electron spin at the Landau level and the magnetic moment of Mn in the δ-layer.  相似文献   

15.
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully transmitting mode, a system thought to be well described without invoking Coulomb interactions. Below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage, corresponding to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are mesoscopic Coulomb blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.  相似文献   

16.
We analyze a Hanbury Brown-Twiss geometry in which particles are injected from two independent sources into a mesoscopic conductor in the quantum Hall regime. All partial waves end in different reservoirs without generating any single-particle interference; in particular, there is no single-particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in the zero-frequency current cross correlations. We demonstrate that this is related to two-particle orbital entanglement, detected via violation of a Bell inequality. The transport is along edge states and only adiabatic quantum point contacts and normal reservoirs are employed.  相似文献   

17.
The magneto-quantum transport phenomena of silicon (110) n-type inversion layers directly reveal the presence of two types of electrons in i = O and O' electric subband states from their respective quantum oscillations. While the higher i = O' states are occupied by only about 6% of the total electron concentration in our samples, the i = O electrons populate two valley pairs each, the level ladders of which are shifted in energy by less than the Landau splitting in the range where quantum oscillations are observed. We propose this effect to originate from a slight misorientation (Δθ < 0.5°) of the surfaces investigated with respect to the (110) axis. Hence, increasing the gate voltage in a quantizing magnetic field all four i = O valleys are alternatingly occupied in pairs with increasing Landau quantum number in our (110) surfaces contrary to former conclusions on samples with comparable properties. The effect of the magnitude of Δθ on the resulting magneto-quantum oscillations is unimportant for 0 < Δθ ? 0.5° as a result of energy minimization for the total electron system.  相似文献   

18.
We establish analogy between a microwave ionization of Rydberg atoms and a charge transport through a chaotic quantum dot induced by a monochromatic field in a regime with a potential barrier between dot contacts. We show that the quantum coherence leads to dynamical localization of electron excitation in energy so that only a finite number of photons is absorbed inside the dot. The theory developed determines the dependence of localization length on dot and microwave parameters showing that the microwave power can switch the dot between metallic and insulating regimes. ultiphoton ionization and excitation to highly excited states (e.g., Rydberg states)  相似文献   

19.
We have systematically measured the electroreflectance spectra of a GaAs (7.0 nm)/Al0.1Ga0.9As (3.5 nm) superlattice at various electric fields to investigate Franz–Keldysh (FK) oscillations. In the low-field regime, we clearly observe the FK oscillations toward the low-energy side of theM1critical point (mini-Brillouin-zone edge). As the electric field is increased, the direction of the FK oscillations is reversed, then the oscillations disappear. The change of the oscillation direction correlates with the transformation of the electronic structures from the miniband to the Stark-ladder states in the Wannier-Stark localization. We discuss these experimental results on the basis of a theory of the FK oscillations and envelope-function forms calculated by a transfer matrix method with Airy functions.  相似文献   

20.
Linear conductance across a large quantum dot via a single level epsilon(0) with large hybridization to the contacts is strongly sensitive to quasibound states localized in the dot and weakly coupled to epsilon(0). The conductance oscillates with the gate voltage due to interference of the Fano type. At low temperature and Coulomb blockade, Kondo correlations damp the oscillations on an extended range of gate voltage values, by freezing the occupancy of the epsilon(0) level itself. As a consequence, the antiresonances of Fano origin are washed out. The results are in good correspondence with experimental data for a large quantum dot in the semiopen regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号