首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Electron Raman scattering (ERS) is investigated in a free-standing semiconductor quantum wire of cylindrical geometry for two classes of materials CdS and GaAs. The differential cross section (DCS) involved in this process is calculated as a function of a scattering frequency and the radius of the cylinder. Electron states are considered to be confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are found and interpreted for various radii of the cylinder.  相似文献   

2.
Optical spectroscopy including photoluminescence, electroluminescence, photocurrent, and differential absorption, have been investigated for the triple-layer InGaAs vertically coupled quantum dots (VCQDs) by adding modulation doping (MD) in the 5 nm GaAs spacer layers. In addition to the QDs fundamental and excited transitions, a coupled-state transition is observed for the VCQDs. For the VCQDs of p-type MD, the optical transitions at ground state and coupled state are enhanced by the improvement of hole capture for the valence subbands. For the VCQDs of n-type MD, the main absorption change occurs at the coupled state, consistent with the dominant emission peak observed in EL spectra.  相似文献   

3.
4.
The scattering intensity (SI) of a free-standing cylindrical semiconductor quantum wire for an electron resonant Raman scattering (ERRS) process associated with bulk longitudinal optical (LO) phonon modes and surface optical (SO) phonon modes is calculated separately for T=0 KT=0 K. The Fröhlich interaction is considered to illustrate the theory for GaAs and CdS systems. Electron states are confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Numerical results and a discussion are also presented for various radii of the cylindrical.  相似文献   

5.
Surface enhanced Raman scattering is studied in nanostructures with CdS quantum dots formed using the Langmuir-Blodgett technology. Features due to quantum dot longitudinal optical phonons are observed in the Raman spectra of both free CdS quantum dots and such dots distributed in an organic matrix. The surface enhanced Raman scattering by nanostructures with CdS quantum dots covered by an Ag cluster film is observed experimentally. Applying Ag clusters onto the nanostructure surfaces results in a sharp (40-fold) increase in the intensity of Raman scattering by optical phonons in the quantum dots. It is shown that the dependence of surface enhanced Raman scattering on the excitation energy is resonant with a maximum at the energy corresponding to the maximum absorption coefficient of Ag clusters.  相似文献   

6.
We report the growth of modulation-doped GaAs/AlxGa1−xAs v-groove quantum wires and structural, electrical and optical investigations of their electronic states and transport properties. By using alternative group III precursors on partially SiO2 masked pre-patterned GaAs substrates, samples have been fabricated which permit electrical measurements of single isolated wire structures without the need for additional electron-beam lithography. Magneto-transport was measured as a function of tilt angle of the incident magnetic field to identify the formation of low-dimensional electron gases in different parts of the structure. Photoluminescence investigations reveal 1D and 2D confined states which show different carrier heating when electric fields are applied along the wire structure.  相似文献   

7.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

8.
This paper reports on the results of resonant Raman scattering investigations of the fundamental vibrations in Ge/Si structures with strained and relaxed germanium quantum dots. Self-assembled strained Ge/Si quantum dots are grown by molecular-beam epitaxy on Si(001) substrates. An ultrathin SiO2 layer is grown prior to the deposition of a germanium layer with the aim of forming relaxed germanium quantum dots. The use of resonant Raman scattering (selective with respect to quantum dot size) made it possible to assign unambiguously the line observed in the vicinity of 300 cm?1 to optical phonons confined in relaxed germanium quantum dots. The influence of confinement effects and mechanical stresses on the vibrational spectra of the structures with germanium quantum dots is analyzed.  相似文献   

9.
We report on photoluminescence and Raman scattering performed at low temperature (T =  10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL =  100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 =  285.6 cm−1forL =  11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.  相似文献   

10.
Raman spectra in superlattices composed of layers of self-assembled CdTe quantum dots separated by ZnTe barriers are investigated. As the barrier thickness increases, a high-frequency shift of all peaks is observed, which is explained by a decrease in the lattice constant averaged over the volume of the entire structure. Peaks are found at a CdTe TO mode frequency of 140 cm?1 and also at 120 cm?1. The first peak is assigned to the symmetric Coulomb (interface) mode of the quantum dot material, and the low-frequency peak is assigned to the symmetric mode of the phonons captured in the quantum dot. This combination of modes in structures with quantum dots has not been observed previously.  相似文献   

11.
A theory of the Zeeman effect for electrons in one-and zero-dimensional semiconductor heterostructures is developed. A relation is established between the number of linearly independent components of the g-factor tensor and the point symmetry of a low-dimensional system. A specific calculation is performed for a spherical quantum dot and a cylindrical wire. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 1, 41–45 (10 January 1998)  相似文献   

12.
13.
The results of a study into the photoluminescence spectra of a set of quantum dots based on GaAs enclosed in AlGaAs nanowires are presented. The steady state and time resolved spectra of photoluminescence under optical excitation both from an array of quantum wires/dots and a single quantum wire/dot have been measured. In the photoluminescence spectra of single quantum dots, emission lines of excitons, biexcitons and tritons have been found. The binding energy of the biexciton in the studied structures was deduced to be 8 meV.  相似文献   

14.
Raman scattering by optical phonons in InxGa1 ? x As/AlAs nanostructures with quantum dots has been studied experimentally for compositions corresponding to x = 0.3?1 under out-resonance conditions. Features due to scattering by GaAs-and InAs-like optical phonons in quantum dots have been detected, and the phonon frequencies have been determined as a function of the dot composition. With increasing excitation energy, a red shift is observed in the frequency of the GaAs-like phonon in quantum dots, which testifies to Raman scattering selective by the size of quantum dots. Under resonant conditions, multiphonon light scattering by optical and interface phonons is observed up to the third order, including overtones of the first-order phonons of InGaAs and AlAs materials and their combinations.  相似文献   

15.
16.
Using the bosonization technique, a theory for the collective excitations of the interacting electrons in quantum wires with two subbands occupied is developed. The dispersion relations for the inter-subband charge and spin density excitations are determined. The results are used to interpret the features observed in recent measurements of the Raman spectra of AlGaAs/GaAs quantum wires, particularly for photon energies near band gap resonance. It is shown that peaks previously identified as “single particle excitations” are signatures of higher order collective spin density excitations. Predictions about the observability of the interband modes are made. Received 8 February 1999  相似文献   

17.
18.
An overview of the current status of the study of spin-wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape anisotropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.  相似文献   

19.
Properties of BaTiO3 colloidal quantum dots and wires are simulated using a first-principles-based approach. Large atomic off-center displacements (that are robust against capping matrix materials) are found to exist in very small (<5 nm) dots. We further determine the size dependences of electrical and electromechanical responses in the studied nanostructures, as well as provide microscopic understanding of these responses.  相似文献   

20.
The differential cross-section of electron Raman scattering and the Raman gain arecalculated and analysed in the case of prismatic quantum dots with equilateral trianglebase shape. The study takes into account their dependencies on the size of the triangle,the influence of externally applied electric field as well as the presence of an ionizeddonor center located at the triangle’s orthocenter. The calculations are made within theeffective mass and parabolic band approximations, with a diagonalization scheme beingapplied to obtain the eigenfunctions and eigenvalues of the x-y Hamiltonian. The incidentand secondary (scattered) radiation have been considered linearly-polarized along they-direction, coinciding with the direction of theapplied electric field. For the case with an impurity center, Raman scattering with theintermediate state energy below the initial state one has been found to show maximumdifferential cross-section more than by an order of magnitude bigger than that resultingfrom the scheme with lower intermediate state energy. The Raman gain has maximum magnitudearound 35 nm dot size andelectric field of 40 kV/cm forthe case without impurity and at maximum considered values of the input parameters for thecase with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in bothcases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号