首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the fourfold signal loss during the cyclic polarization-transfer (CYCLPOT) sequence for lactate filtering is analyzed using the spin-product-operator formalism. Based on the results of the analysis, a new sequence, RECYCLPOT (refocused CYCLPOT), is proposed and experimentally tested for lactate filtering with full sensitivity and specificity. Lactate mapping is performed by spin filtering using the RECYCLPOT sequence prior to imaging by spatial encoding.  相似文献   

2.
3.
用NMR对异氟尔酮二异氰酸酯(IPDI)的两种立体异构体进行结构表征,包括1H、13C、DEPT135、HMBC、HMQC谱,并详细解析图谱. 此外对这两种异构体在不同温度下的稳定性进行了研究.   相似文献   

4.
IPDI的NMR数据解析   总被引:1,自引:0,他引:1  
用NMR对异氟尔酮二异氰酸酯(IPDI)的两种立体异构体进行结构表征,包括1H、13C、DEPT135、HMBC、HMQC谱,并详细解析图谱.此外对这两种异构体在不同温度下的稳定性进行了研究.  相似文献   

5.
6.
7.
8.
The interaction of xenon with different proteins in aqueous solution is investigated by (129)Xe NMR spectroscopy. Chemical shifts are measured in horse metmyoglobin, hen egg white lysozyme, and horse cytochrome c solutions as a function of xenon concentration. In these systems, xenon is in fast exchange between all possible environments. The results suggest that nonspecific interactions exist between xenon and the protein exteriors and the data are analyzed in term of parameters which characterize the protein surfaces. The experimental data for horse metmyoglobin are interpreted using a model in which xenon forms a 1:1 complex with the protein and the chemical shift of the complexed xenon is reported (Locci et al., Keystone Symposia "Frontiers of NMR in Molecular Biology VI", Jan. 9--15, 1999, Breckenridge, CO, Abstract E216, p. 53; Locci et al., XeMAT 2000 "Optical Polarization and Xenon NMR of Materials", June 28--30, 2000, Sestri Levante, Italy, p. 46).  相似文献   

9.
10.
Recently, a number of magnetic resonance imaging protocols have been reported that seek to exploit the effect of dissolved oxygen (O2, paramagnetic) on the longitudinal 1H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo. Bayesian-based model selection was applied to a cohort of five competing relaxation models: (1) monoexponential, (2) stretched-exponential, (3) biexponential, (4) Gaussian (normal) R 1-distribution, and (5) gamma R 1-distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.  相似文献   

11.
Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different tm regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied.  相似文献   

12.
The potential of (33)S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that (33)S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. (33)S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the (33)S NMR spectra of biological tissues.  相似文献   

13.
The applications of (7)Li NMR spectroscopy and imaging in biology and experimental medicine have been progressing steadily. The interest derives primarily from the clinical use of Li salts to treat mania and manic-depressive illness. One area of investigation is ionic transport across the cellular membrane and compartmentation, so as to elucidate the mechanism(s) of therapeutic action and toxicity in clinical practice. The second is the development of a noninvasive, in vivo analytical tool to measure brain Li concentrations in humans, both as an adjunct to treatment and as a mechanistic probe. Here we review progress to date in this area.  相似文献   

14.
In this work, we describe a new 2D (13)C-(13)C correlation experiment in solids, in which (13)C-(13)C J-correlation (COSY) and dipolar correlation (DARR) are recorded at the same time. The sequence is similar to COCONOSY in the liquid-state NMR, in which (1)H-(1)H COSY and NOESY spectra are obtained in a single experiment. The combined COSY and DARR experiment facilitates assignment of (13)C signals in solids.  相似文献   

15.
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.1 and 21.34 MHz) Larmor frequencies in the temperature range 350-50K and (1)H NMR second moment measurements at 7 MHz in the temperature range 300-100K employing home made pulsed and wide-line NMR spectrometers. (1)H NMR results are attributed to the simultaneous reorientations of both methyl and tetramethylammonium groups and motional parameters are evaluated. (19)F NMR results are attributed to cross relaxation between proton and fluorine and motional parameters for the PF(6) group reorientation are evaluated.  相似文献   

16.
17.
《Solid State Ionics》2006,177(33-34):2873-2880
Proton dynamics in Cs3(HSO4)2(H2PO4) has been studied by means of 1H solid-state NMR as well as thermal analyses. The thermal analysis shows an endothermic peak at 408 K, which corresponds to a superprotonic transition. Above the transition temperature a mass loss is observed in a dry atmosphere, which is easily recovered in a conventional dry atmosphere below the transition temperature. The 1H magic-angle-spinning NMR spectra at room temperature show two peaks at 13.5 and 15.8 ppm, and a shoulder at 11.3 ppm from tetramethylsilane, demonstrating a presence of several inequivalent proton sites. Translational diffusion of protons takes place in both a room-temperature phase (RT) and a high-temperature phase (HT). In both phases reorientation of the SO4/PO4 tetrahedron limits the rate of the proton transport. The 1H mean residence times are estimated as Ea = 33 kJ mol 1 and τ0 = 0.97 × 10 9 s for phase RT from the second moment analysis and as Ea = 20 kJ mol 1 and τ0 = 5.0 × 10 12 s for phase HT from the analysis of the 1H T1 results.  相似文献   

18.
《Solid State Ionics》1988,26(2):125-131
Full profile analyses of the digitized 29Si NMR spectra of a potassium zeolite L and a gallosilicate analog are described. Both spectra can be fitted reasonably based on the assumption that they comprise only a single set of SinAl(Ga); n=0−4 peaks, reflecting that the mean T-O-T angles for the two T-sites (T=tetrahedral species, Si, Al or Ga) are similar.  相似文献   

19.
Hyperpolarized (hp) (131)Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T(1) relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent (131)Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in (129)Xe SEOP. (131)Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase (131)Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp (131)Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp (131)Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I ≥ 1/2 nuclei is presented.  相似文献   

20.
A theory of dynamic angle spinning (DAS) and double rotation (DOR) NMR is described using average Hamiltonian and irreducible tensor methods. Sideband intensities in DAS and DOR spectra are analyzed by both the moment and Bessel function methods, and general formulae are derived. Results show that the DAS moments depend on the relative rotor phase between the first and the second evolution periods, whereas the second and third DOR moments are independent of the relative phase between the inner and outer rotors. Sideband intensities in DAS spectra also depend on the relative rotor phases between evolution at the first and second angles, as well as on the ratio of time spent at each angle. Sideband intensities and phases in DOR spectra are related to the relative rotor phases between the inner and outer rotors, and the sideband pattern is determined by the ratio of the inner and outer rotor spinning speeds. An inversion symmetry of the odd numbered DOR sidebands at the relative rotor phase gamma r = 0 degree, 180 degrees permits the elimination of these sidebands. Finally, numerical simulations are implemented and shown to agree with experimental results. Quadrupolar parameters can therefore be recovered either by calculating the second and third moments or by simulating the sideband intensities and phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号