首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the adsorption process was examined by various isotherm models Langmuir, Freundlich and Dubinin–Radushkevich and equilibrium data were successfully described by Langmuir model. Adsorption thermodynamics of uranium (VI) on modified silica gel (SiAPMS-HL) has been studied within a temperature range from 293 to 333 K and the thermodynamic parameters, such as equilibrium constant (K D), standard free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), have been obtained. The desorption studies were conducted in batch system to investigate the kind, concentration and volume of the eluent.  相似文献   

2.
The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5–4.5) and temperature (15–35°C) in the presence and absence of surfactant were investigated. Activation parameters, ΔE a, ΔH #, ΔS #, ΔG , for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule (A min), average area occupied by each molecule of surfactant (a), surface pressure at the CMC (Πmax), Gibb’s energy of micellization (ΔG M°), Gibb’s energy of adsorption (ΔG ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.  相似文献   

3.
《印度化学会志》2023,100(2):100924
A new modified material was synthesized and characterized as ethylene diamine modified (EA) Polyacrylamide (PAA)-Lignin (L). The adsorption features of EA modified PAA-L were studied for uranyl ions. The characterization experiments were evaluated by FT-IR spectroscopic techniques, scanning electron microscopy (SEM), and PZC analysis. Adsorption of UO22+ ions as a function of concentration, pH, temperature, and time of adsorption were studied. The adsorption phenomenon of UO22+ ions onto PAA-L-EA from aqueous medium was successfully evaluated by various equilibrium models such as Langmuir, Freundlich, and Dubinin-Radushkevich (DR). The (Qe) maximum adsorption capacity values for Langmuir model was calculated as 0.792 kg mol?1 by using experimental data. The constant values of thermodynamic parameters such as (ΔG°), (ΔH°) and (ΔS°) were calculated and it has observed that the mechanism of adsorption was found compatible with endothermic and spontaneous owing to increasing disorderliness at solution/solid system. The adsorption mechanism is compatible with Elovich and intraparticle diffusion models. The power of the interaction between modified lignin and uranyl ?on was explained in the light of Hard and Soft Acid-Base Principle.  相似文献   

4.
The thermodynamics of nicotinic acid adsorption from aqueous solution on carboxymethyl cellulose Ce(IV) molybdophosphate composite cation exchanger were studied. The composite cation exchanger was synthesized by sol–gel method and thereby characterized using scanning electron microscopy, thermogravimetric analysis, X-ray powder diffraction and fourier transform infra red spectroscopy. The analytical applicability and thermodynamic parameters, such as Freundlich constant, thermodynamic equilibrium constant (K ο), standard free energy changes (Δ), standard enthalpy changes (Δ) and standard entropy changes (Δ) of this composite cation exchanger have been evaluated. The thermodynamic parameters showed that the adsorption of nicotinic acid onto composite cation exchanger is feasible, spontaneous and exothermic, suggesting their suitability for the potential application of nicotinic acid removal from waste water.  相似文献   

5.
Activated carbon was prepared from lignocellulosic material (Eucalyptus Globulus labill seed) by chemical activation with ZnCl2 at two different concentrations (10 and 25 % m/v) named ACS25 and ACS10. The textural characteristics of the activated carbons (ACs) were determined by N2 adsorption isotherms; these exhibit B.E.T. surface areas of 250 and 300 m2 g?1 for ACS25 and ACS10, respectively, with micropore volume contents of 0.140 and 0.125 cm3 g?1 in the same order. In addition, the FTIR and Boehm methods were conducted for the chemical characterisation of ACs, where many groups with basic character were found, which favours the adsorption of phenols. The prepared carbonaceous adsorbents were used in the adsorption of wide pollutants monosubstituted phenol derivatives: phenol, 4-nitrophenol and 4-chlorophenol. The effect of temperature on the thermodynamics, kinetic and equilibrium of phenols adsorption on ACs was thoroughly examined. The adsorption kinetics adjusted properly for a pseudo-second-order kinetic model. However, the Elovich model (chemisorption) confirms that phenols adsorption did not occur via the sharing of electrons between the phenolic ring and basal plane of ACs because is not properly adjusted, so the process is given by physisorption. The thermodynamic parameters [i.e. Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°)] were also evaluated. The overall adsorption process was exothermic and spontaneous in nature. The values found in the thermodynamic study, confirm that the adsorption process corresponds to a clearly physical process.  相似文献   

6.
Batch adsorption experiments were carried out, aiming to remove lead ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent, which is cheap, widespread, and may represent an environmental problem. The main parameters (i.e., solution pH, sorbent and lead concentration, shaking time, and temperature) influencing the sorption process, were investigated. The results obtained showed that the sorption of Pb2+ ions onto PMW was fitted well with the linear Freundlich and Langmuir models over the concentration range studied. From the Dubinin–Radushkevick (D–R) isotherm model it was found that the adsorption was chemical in nature. Thermodynamic parameters viz. the change in Gibbs free energy change (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also calculated. These parameters indicated that the adsorption process of Pb2+ ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed, the removal of about 100% of Pb2+ ions was attained. The procedure was successfully applied to remove lead ions from aqueous and different natural water samples. Moreover, the adsorption mechanism is suggested.  相似文献   

7.
Present study deals with the adsorption of phenol on carbon rich bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse-fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of phenol. C0 varied from 75 to 300 mg/l for the adsorption isotherm studies and the effect of temperature on adsorption. Optimum conditions for phenol removal were found to be pH0  6.5, adsorbent dose ≈10 g/l of solution and equilibrium time ≈5 h. Adsorption of phenol followed pseudo-second order kinetics with the initial sorption rate for adsorption on ACL being the highest followed by those on BFA and ACC. The effective diffusion coefficient of phenol is of the order of 10−10 m2/s. Equilibrium isotherms for the adsorption of phenol on BFA, ACC and ACL were analysed by Freundlich, Langmuir, Temkin, Redlich–Peterson, Radke–Prausnitz and Toth isotherm models using non-linear regression technique. Redlich–Peterson isotherm was found to best represent the data for phenol adsorption on all the adsorbents. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for phenol adsorption on BFA were estimated as 1.8 MJ/kg K and 0.5 MJ/kg, respectively. The high negative value of change in Gibbs free energy (ΔG°) indicates the feasible and spontaneous adsorption of phenol on BFA. The values of isosteric heat of adsorption varied with the surface loading of phenol.  相似文献   

8.
The adsorption properties of γ-Al2O3 were studied using gas chromatography. Isotherms of adsorption of n-alkanes (C6–C9), hex-1-ene, benzene, and isobutanol were measured within 70–100°C. The isosteric heats of adsorption and contributions to them from dispersion (Δq dis) and specific (Δq sp) interactions were determined for hex-1-ene, benzene, and isobutanol. Under the conditions covered, hex-1-ene molecules are adsorbed mainly on account of dispersion interactions. For the adsorption of benzene, Δq dis is nearly twice as large as Δq sp, while for the adsorption of isobutanol, Δq sp is nearly twice as large as Δq dis. At 100°C, isobutyl alcohol is chemisorbed.  相似文献   

9.
Kinetic, equilibrium, and thermodynamic studies were performed for the batch adsorption of methylene blue (MB) on the high lime fly ash as a low cost adsorbent material. The studied operating variables were adsorbent amount, contact time, dye concentration, and temperature. The kinetic data were analyzed using the pseudo-first order and pseudo-second order kinetic models and the adsorption kinetic was followed well by the pseudo-second order kinetic model. The equilibrium data were fitted with the Freundlich, Langmuir, and Dubinin Radushkevich (D–R) isotherms and the equilibrium data were found to be well represented by the Freundlich and D–R isotherms. Based on these two isotherms MB is taken by chemical ion exchange and active sites on the high lime fly ash have different affinities to MB molecules. Various thermodynamic parameters such as enthalpy of adsorption (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were investigated. The positive value of ΔH° and negative value of ΔG° indicate that the adsorption is endothermic and spontaneous. The positive value of ΔS° shows the increased randomness at the solid–liquid interface during the adsorption. A single-stage batch adsorber was also designed based on the Freundlich isotherm for the removal of MB by the high lime fly ash.  相似文献   

10.
Abstract

The inhibitive performance of methanolic extract of eco-friendly green inhibitor Spiraea cantoniensis (S. cantoniensis) on inhibiting corrosion of mild steel (MS) in 1?M HCl was studied by weight loss, AC-impedance, Fourier transform infrared spectroscopy (FT-IR), Raman, x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), atomic absorption spectroscopy (AAS), and scanning electron microscopy (SEM) analysis. The results showed that the corrosion rate significantly decreased in the presence of the S. cantoniensis inhibitor with a gradual increase in inhibition efficiency at an increased inhibitor concentration. The temperature studies were conducted which included activation energy (Ea), change in enthalpy (ΔH°ads), change in entropy (ΔS°ads), change in free energy (ΔG°ads) and heat of adsorption (Qads). These calculations were helpful to determine the reaction mechanism and proved it as a physisorption type following the Langmuir adsorption isotherm. The analysis of the protective film using FT-IR, Raman, XRD, and SEM analysis clearly showed the potentiality of S. cantoniensis in blocking the MS surface to prevent corrosion by 1?M HCl. The solution analysis via AAS and UV-Vis showed the inhibitive effect of the inhibitor (S. cantoniensis) in both inhibitive and the uninhibitive solution exhibiting the adsorption of the phytochemical molecules on the MS surface.  相似文献   

11.
In this study, the silylant agent 3-aminopropyl trimethoxysilane (APTES) was anchored on expanded glass aggregate (GA) to prepare a new adsorbent. N-Benzoyl-N′-(4-methylphenyl) thiourea (TTU) bonded to amino-functionalized GA adsorbent with reflux. Developed adsorbent (GA-APTES-TTU) was characterized using thermal analysis (TGA) and scanning electron microscopy (SEM). TGA and SEM studies indicated that modification of the glass aggregate (GA) surfaces was successfully performed. The adsorption studies exhibited that the GA-APTES-TTU could be efficiently used for the removal of Cr(III) from aqueous solutions. The effects of pH, adsorbent dosage, ion concentration, time, and temperature were investigated as adsorption parameters. The maximum removal of Cr(III) was observed at pH 4. The adsorption equilibrium was achieved in 120 min and adsorption of Cr(III) followed the Langmuir isotherm model. The maximum adsorption capacity for Cr(III) was 0.4305 mmol/g with GA-APTES-TTU. Thermodynamic parameters such as the standard free energy (ΔGo), enthalpy change (ΔH°) and entropy change (ΔS°) were calculated in order to explain the mechanism of adsorption process. The thermodynamic data showed that Cr(III) adsorption was spontaneous, endothermic, and a physisorption reaction. In addition, the adsorption kinetic data fitted to the pseudo-second order model.  相似文献   

12.
In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.  相似文献   

13.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

14.
The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°) were calculated.  相似文献   

15.
A synthetic graft copolymer of cross-linked starch/acrylonitrile was used as an adsorbent for the removal of Cu(II) ions from an aqueous solution of copper nitrate hexahydrate Cu(NO3)2 · 6H2O at different temperatures and fixed pH. The amount adsorbed increased with increasing concentration of Cu(II) ions and decreasing temperature. The length of time taken to reach equilibrium of the adsorption of Cu(II) ions was the same at all temperatures tested. Kinetics studies showed that the adsorption process obeyed first-order reversible kinetics and the adsorption isotherms followed the Freundlich model. Furthermore, the thermodynamic parameters, i.e. standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS), of the adsorption process were calculated and the results are discussed in detail.  相似文献   

16.
The values of ΔG(O2), ΔH(O2), and ΔS(O2) have been determined from electrochemical cell measurements, within the whole homogeneity range of WO3?x, between 700 and 900°C. The samples have been previously prepared by equilibration of WO3 pellets with COCO2 mixtures and their composition has been determined by thermogravimetry. A single phase has been found between WO3 and WO2.9760. The results may be understood by considering a structure involving point defects, singly ionized oxygen vacancies V·O between WO3 and WO2.9880. For larger departure from stoichiometry, the variations of ΔH(O2) and ΔS(O2) suggest the formation of more complex defects. The enthalpy of formation of V·O has been calculated: 78 kcal · mole?1.  相似文献   

17.
Adsorption of Cu(II) from aqueous solution on a novel adsorbent, silicon carbide ash (SiC ash), was studied using batch technique. The adsorbent was prepared by pyrolysis of Egyptian rice waste (rice straw and rice husk) and was characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and surface area analysis by Brunauer-Emmett-Teller (BET) Theory. The influence of pH, contact time, initial Cu(II) concentration, adsorbent dose, agitation speed, and temperature was investigated. Adsorption kinetics was analyzed using the pseudo-first-order, the pseudo-second-order, and intraparticular diffusion model. The adsorption process was found to follow a pseudo-second-order rate mechanism. The adsorption isotherm data could be well described by the Langmuir and Freundlich than the Dubinin–Radushkevich adsorption model. The adsorption capacity of 22.06 mg g?1for SiC ash was obtained at pH = 5 and temperature of 298 K. Thermodynamic parameters, change in the free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°), were also calculated. The overall adsorption process was exothermic, spontaneous in nature, and proceeds with decreased randomness as the entropy is negative value. Adsorption process was successfully applied to remove Cu(II) from an industrial wastewater sample.  相似文献   

18.
Surface Characterization of Sepiolite by Inverse Gas Chromatography   总被引:1,自引:0,他引:1  
Inverse gas chromatography (IGC) was applied to characterize the surface of sepiolite. The adsorption thermodynamic parameters (the standard enthalpy (ΔH 0), entropy (ΔS 0) and free energy of adsorption (ΔG 0)), the dispersive component of the surface energy (γ S d ), and the acid/base character of sepiolite surface were estimated by using the retention time of different non-polar and polar probes at infinite dilution region. The specific free energy of adsorption (ΔG sp ), the specific enthalpy of adsorption (ΔH sp ), and the specific entropy of adsorption (ΔS sp ) of polar probes on sepiolite were determined. ΔH sp were correlated with the donor and modified acceptor numbers of the probes to quantify the acidic K A and the basic K D parameters of the sepiolite surface. The values obtained for the parameters K A and K D indicated an acidic character for sepiolite surface.  相似文献   

19.
A series of glucosyl esters surfactants were synthesized based on glucose molecule by enzymatic catalysis. It could reach the highest esterification yield of 83.4% at the optimal condition, molar ratio of D-glucose and fatty acyl amino acid as 3:2 using 11% (w/w) enzyme catalyst Lipozyme 435 as catalyst in t-butanol at 40°C. The surface activities were studied, such as the critical micelle concentration (CMC), surface tension (γcmc), maximum excess concentration (Γmax), minimum surface area/molecule (Amin), and the adsorption efficiency (pC20); values of these were obtained by surface tension test. The results show that the longer the hydrophobic chain length, the lower the CMC and γcmc. The CMCs of novel glucosyl esters were between 4.4 and 1.5 mM. Further, the micellization physiochemical parameters, including Gibbs free energy of micellization (ΔG), standard enthalpy change (ΔH), and standard entropy change (ΔS) were calculated. It was indicated the micellization of glucosyl esters 9–16 was driven by entropy and deduced at different temperature.  相似文献   

20.
The adsorption properties of MgO, which is used as a sorbent and catalyst support, were studied using gas chromatography. The test absorbents used were n-alkanes (which show only nonspecific dispersion interactions when physisorbed on any adsorbent) and adsorbates whose molecules are capable of specific interactions with the surface reactive sites of MgO. Adsorption isotherms were measured for CHCl3, CH3NO2, CH3CN, (CH3)2CO, CH3COOC2H5, and (C2H5)2O on MgO at 50–100°C. Differential molar enthalpy changes (?ΔH), equal to molar heats of adsorption, were determined. For polar adsorbates, contributions from dispersive and specific interactions into ?ΔH were determined. The electron-acceptor and electron-donor abilities of the MgO surface were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号