首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collective intersubband plasmon-like excitations are predicted to exist for a semiconductor superlattice. These modes arise because the single quantum well depolarization shifted intersubband excitation couples via the long-range Coulomb interaction with the corresponding excitations of the other quantum wells of the superlattice. The dispersion relation for these intersubband plasmons is obtained.  相似文献   

2.
《Current Applied Physics》2015,15(3):335-341
We report an analysis on a phonon spectral function of a solid-state plasma formed in a doped semiconductor. Real and imaginary parts of phonon propagators are evaluated including carrier screening effects within a random phase approximation, and finite-temperature spectral behavior of the phonon spectral function is examined in terms of plasmon-phonon coupled modes and quasiparticle excitation mode of the plasma. The results are applied to the case of conduction electrons in a wurtzite GaN considering carrier-phonon coupling channel via polar optical phonons. We show that the dispersion relations of the plasmon-LO phonon coupled (‘upper’ and ‘lower’) modes and the character of the additional modes via single quasiparticle excitations are heavily associated with the nonlocal and dynamic behavior of the energy shift and collisional broadening of the dressed phonon propagator of the plasma.  相似文献   

3.
Large resonance enhancements in the inelastic light scattering intensities involving free carriers have been measured at the E0 + Δ0 energy gap of n-GaAs.Results for spin-flip single particle excitations are well described as unscreened intraband scattering involving the Γ7 valence band as intermediate state. The resonance of the longitudinal plasmon-phonon coupled modes indicates the contribution of other so far not fully identified processes.  相似文献   

4.
Collective excitations and their coupling to optical phonons have been studied for a two-dimensional electron gas in -doped polar semiconductors within the random-phase approximation. The inelastic light scattering spectrum due to the coupled plasmon–phonon modes are calculated for the multisubband two-dimensional electron systems. Our calculation shows that, due to the high electron density in these systems, both intrasubband and intersubband plasmons are strongly coupled to the optical-phonons. On the other hand, due to the high impurity concentration, level broadening modifies the inelastic light scattering spectrum significantly.  相似文献   

5.
Low-lying collective excitations above highly correlated ground states of few interacting electrons confined in GaAs semiconductor quantum dots are probed by resonant inelastic light scattering. We highlight that separate studies of the changes in the spin and charge degrees of freedom offer unique access to the fundamental interactions. The case of quantum dots with four electrons is found to be determined by a competition between triplet and singlet ground states that is uncovered in the rich light scattering spectra of spin excitations. These light scattering results are described within a configuration-interaction framework that captures the role of electron correlation with quantitative accuracy. Recent light scattering results that reveal the impact of anisotropic confining potentials in laterally coupled quantum dots are also reviewed. In these studies, inelastic light scattering methods emerge as powerful probes of collective phenomena and spin configurations in quantum dots with few electrons.  相似文献   

6.
We predict a carrier-density dependent oscillation, which is superimposed on the decay of the coherent control photon echo signal of a semiconductor. It reflects the oscillatory transfer of excitation back and forth between electrons and a mixed plasmon-phonon mode. This signature provides obvious and unique evidence for the finite duration of the interaction process, i.e., evidence for the collective Coulomb quantum kinetics. The theoretical predictions for the model semiconductor GaAs are reproduced in corresponding experiments.  相似文献   

7.
The collective plasmon excitations of a superlattice are investigated in both the classical and quantum limits. Using a model that is applicable to superlattices whose constituent layers are either semiconductor- semiconductor, semiconductor-metal, or metal-metal, we show that the surface plasmon interface modes of each layer (slab) couple via the long range Coulomb interaction into two bands of plasmons with dispersion along the superlattice axis. Results for plasmon dispersion are presented for the classical limit (de Broglie wavelength less than the layer width) where the response is treated via a solution of Maxwell's equations using the bulk 3-D dielectric constant to describe each intervening layer. These results are compared to the plasmon dispersion in the quantum regime where the wave-vector frequency dependent dielectric constant of the superlattice is calculated taking into account quantization effects (subband structure). The relationship between the modes in both limits is derived.  相似文献   

8.
We use an ensemble Monte Carlo simulation of coupled electrons, holes and nonequilibrium polar optical phonons in multiple quantum well systems to model the intersubband relaxation of hot carriers measured in ultra-fast optical experiments. We have investigated the effect of various models of confined photon modes on the energy relaxation and intersubband transition rate in single quantum well and coupled well systems. In particular, the symmetry of the atomic displacement with respect to the quantum well has a marked effect on the relative intersubband versus intrasubband scattering rates, depending on whether one considers electrostatic boundary conditions(slab modes) or mechanical boundary conditions(guided modes). In single quantum wells systems, the overall intersubband relaxation time is not found to be strongly dependent on the confined mode model used due to competing effects of hot phonons and the relative intrasubband scattering rates. For coupled well systems, the relaxation rate is much more dependent on the exact nature of the phonon amplitude. Large effects are found associated with localized AlAs interface modes which dominate the intersubband relaxation time.  相似文献   

9.
Polariton states have been investigated in a microcavity, where the energy of the Frenkel exciton in an organic quantum well and the energy of the semiconductor Wannier–Mott exciton in an inorganic quantum well are close to the microcavity optical mode. It has been shown that the interaction of each of these excitons with the microcavity optical mode leads to their interaction with each other and to the formation of mutually coupled hybrid excitations. The influence of the location of the quantum wells in a microcavity on the spectra of hybrid states with different polarizations has been analyzed.  相似文献   

10.
A new mechanism of the intraband carrier relaxation in quantum dots embedded into a heterostructure at a relatively large distance from its doped elements is proposed. The relaxation process is related to the coupling between the electronic subsystem of a quantum dot and surface plasmon-phonon excitations of the doped components of the heterostructure via the electric potential produced by these excitations. It is found that, in layered heterostructures, the dispersion relations of the surface plasmon-LO-phonon modes display critical points giving rise to pronounced singularities in the relaxation rate spectra. The estimates of the relaxation rates for InAs quantum dots embedded into a GaAs heterostructure have shown high efficiency of the proposed mechanism even when the quantum dots are located at a distance of up to 100 nm from the doped regions of the heterostructure. When this distance lies in the range of a few tens of nanometers, this mechanism appears to be predominant. Possible manifestations of the relaxation mechanism under consideration in the photoluminescence spectra of quantum dots are discussed.  相似文献   

11.
Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (QW) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons. The oscillator strength of intersubband resonances (ISBRs) strongly varies with QW parameters and electron density because of this coupling. Using the intersubband semiconductor Bloch equations for a two-conduction-subband model, we show that intersubband absorption spectra for narrow wells are dominated by the Fermi-edge singularity (via coupling to repellons) when the electron gas becomes degenerate and in the presence of large nonparabolicity. Thus the resonance peak position appears at the Fermi edge and the peak is greatly narrowed, enhanced, and red shifted as compared to the free particle result. Our results uncover a new perspective for ISBRs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBR line shape.  相似文献   

12.
对石墨烯/铜体系开展了系统性的近场光学实验研究,成功观测到了区别于铜衬底的、来自石墨烯的近场光学响应信号,发现在表面台阶几何参数相同的铜衬底上的不同石墨烯样品表现出了截然不同的近场光学响应.  相似文献   

13.
The cyclotron excitation spectrum of selectively doped AlGaAs/GaAs quantum wells with a high (up to 2 × 107 cm2/(V s)) mobility of electrons has been studied by means of the Raman scattering. The lines of the Raman scattering by the excitations of D ? complexes, the objects in which two electrons localized in a quantum well are coupled to a charged impurity in a barrier, have been detected and identified. Spin-singlet D ? complexes have been shown to exist in the entire range of the electron filling factor, from v → 0 to v = 2, owing to the specificity of the Coulomb interaction in two-dimensional systems. The excitation energies of the singlet D ? complexes have been studied as functions of the electron density, quantum well width, and magnetic field.  相似文献   

14.
Effects of electron-phonon interaction on the interaction between electrons in semiconductor quantum wells are considered. It is found that the direct Coulomb potential between electrons in a quantum well is smaller than that in bulk semicondutors. The antisymmetric modes of the confined bulk phonons and interface phonons have no contribution to the effective interaction of electrons. If a well is narrow enough, the effective interaction between electrons caused by interaction with interface phonons may exceed that by interaction with confined bulk phonons. In narrower wells the effective interaction potential of electrons produced by phonons is stronger, but decreases rapidly with increasing distance between electrons.  相似文献   

15.
Amusia  M. Ya.  Chernysheva  L. V. 《JETP Letters》2018,107(7):435-439
The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole–dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.  相似文献   

16.
Electron-emission distribution curves of carbon layer surfaces excited by primary electrons of energies in the 118-534 eV range have been measured. The first four peaks in the plasmon spectrum are observed. It is concluded that the oscillator energies are presented to explain the assignment of the quantum number (n = 0,1,2,3) for internal plasmons in carbon layer systems. The preliminary assignment is in good agreement with the experimental results. It is also shown that the existence of limit between internal and surface plasmons. It is pointed out that the plasmon energy does not depend on both the external electrostatic voltage and the sample temperature. Moreover, the quantum number was adopted to the names of internal plasmons in the observed spectra.  相似文献   

17.
We present recent studies of electronic excitations in nanofabricated AlGaAs/GaAs semiconductor quantum dots (QDs) by resonant inelastic light scattering. The resonant light scattering spectra are dominated by excitations from parity-allowed inter-shell transitions between Fock–Darwin levels. In QDs with very few electrons the resonant spectra are characterized by distinct charge and spin excitations that reveal the strong impact of both exchange and correlation effects. A sharp inter-shell spin excitation of the triplet spin QD state with four electrons is identified.  相似文献   

18.
The dispersion law of one-dimensional plasmons in a quasi-one-dimensional system of massless Dirac fermions has been calculated. Two model two-dimensional systems where bands of edge states filled with such Dirac fermions appear at the edge have been considered. Edge states in the first system, topological insulator, are due to topological reasons. Edge states in the second system, system of massive Dirac fermions, have Tamm origin. It has been shown that the dispersion laws of plasmons in both systems in the long-wavelength limit differ only in the definition of the parameters (velocity and localization depth of Dirac fermions). The frequency of plasmons is formally quantum (ω ∝ ? ?1/2) and, in the case of the Coulomb interaction between electrons, depends slightly on the Fermi level E F. The dependence on E F is stronger in the case of short-range interaction. The quantum features of oscillations of massless one-dimensional Dirac fermions are removed by introducing the mass of Dirac fermions at the Fermi level and their density. Correspondence to the dispersion law of classical one-dimensional plasma oscillations in a narrow stripe of “Schrödinger” electrons has been revealed.  相似文献   

19.
Multiphoton excitations and nonlinear optical properties of exciton states in GaAs/Al_xGa_(1-x)As coupled quantum well structure have been theoretically investigated under the influence of a time-varying high-intensity terahertz(THz) laser field. Non-perturbative Floquet theory is employed to solve the time-dependent equation of motion for the laser-driven excitonic quantum well system. The response to the field parameters, such as intensity and frequency of the laser electric field on the state populations, can be used in various optical semiconductor device applications, such as photodetectors,sensors, all-optical switches, and terahertz emitters.  相似文献   

20.
We study localized plasmons at the nanoscale (nano-plasmons) in graphene. The collective excitations of induced charge density modulations in graphene are drastically changed in the vicinity of a single impurity compared to graphene's bulk behavior. The dispersion of nano-plasmons depends on the number of electrons and the sign, strength and size of the impurity potential. Due to this rich parameter space the calculated dispersions are intrinsically multidimensional requiring an advanced visualization tool for their efficient analysis, which can be achieved with parallel rendering. To overcome the problem of analyzing thousands of very complex spatial patterns of nano-plasmonic modes, we take a combined visual and quantitative approach to investigate the excitations on the two-dimensional graphene lattice. Our visual and quantitative analysis shows that impurities trigger the formation of localized plasmonic excitations of various symmetries. We visually identify dipolar, quadrupolar and radial modes, and quantify the spatial distributions of induced charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号