首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ductile titanium alloy with low Poisson's ratio   总被引:1,自引:0,他引:1  
We report a ductile beta-type titanium alloy with body-centered cubic (bcc) crystal structure having a low Poisson's ratio of 0.14. The almost identical ultralow bulk and shear moduli of approximately 24 GPa combined with an ultrahigh strength of approximately 0.9 GPa contribute to easy crystal distortion due to much-weakened chemical bonding of atoms in the crystal, leading to significant elastic softening in tension and elastic hardening in compression. The peculiar elastic and plastic deformation behaviors of the alloy are interpreted as a result of approaching the elastic limit of the bcc crystal under applied stress.  相似文献   

2.
Lun Xiong 《中国物理 B》2022,31(11):116102-116102
We have studied the high-pressure compression behavior of molybdenum up to 60 GPa by synchrotron radial x-ray diffraction (RXRD) in a diamond anvil cell (DAC). It is found that all diffraction peaks of molybdenum undergo a split at around 27 GPa, and we believe that a phase transition from a body-centered cubic structure to a rhombohedral structure at room pressure has occurred. The slope of pressure-volume curve shows continuity before and after this phase transition, when fitting the pressure-volume curves of the body-centered cubic structure at low pressure and the rhombohedral structure at high pressure. A bulk modulus of 261.3 (2.7) GPa and a first-order derivative of the bulk modulus of 4.15 (0.14) are obtained by using the nonhydrostatic compression data at the angle ψ = 54.7° between the diffracting plane normal and stress axis.  相似文献   

3.
Interaction of amorphous boron and C60 fullerite is analyzed at pressures of 2.0 and 7.7. GPa and temperatures of 600–1800°C. Effect of pressure and temperature on the material structure is studied, temperatures for synthesis of boron carbide and diamond are found, and the sequence of transformations of the carbon component is determined. Ultrasonic method is used to measure elastic moduli of the samples, and the dependences of the moduli on the structure are analyzed. It is demonstrated that the boron–carbon nanocomposite synthesized at relatively low pressure (2.0 GPa) and temperature (about 1000°C) exhibits high elastic parameters (bulk modulus, B ≈ 75.3–84.0 GPa; Young modulus, E ≈ 108–119 GPa; and shear modulus, G ≈ 43–47 GPa at a density of about 2.2 g/cm3). The results can be used for development of novel nanocomposite materials.  相似文献   

4.
With the formation of structural vacancies,zirconium nitrides(key materials for cutting coatings,super wearresistance,and thermal barrier coatings) display a variety of compositions and phases featuring both cation and nitrogen enrichment.This study presents a systematic exploration of the stable crystal structures of zirconium heminitride combining the evolutionary algorithm method and ab initio density functional theory calculations at pressures of 0 GPa,30 GPa,60 GPa,90 GPa,120 GPa,150 GPa,and 200 GPa.In addition to the previously proposed phases P42/mnm-,Pnnn-,and Cmcm-Zr2 N,five new high-pressure Zr2N phases of PA/nmm,IA/mcm,P21/m,P3 m1,and C2/m are discovered.An enthalpy study of these candidate configurations reveals various structural phase transformations of Zr2 N under pressure.By calculating the elastic constants and phonon dispersion,the mechanical and dynamical stabilities of all predicted structures are examined at ambient and high pressures.To understand the structure-property relationships,the mechanical properties of all Zr2N compounds are investigated,including the elastic moduli,Vickers hardness,and directional dependence of Young’s modulus.The Cmncm-Zr2 N phase is found to belong to the brittle materials and has the highest Vickers hardness(12.9 GPa) among all candidate phases,while the I4/mcm-Zr2 N phase is the most ductile and has the lowest Vickers hardness(2.1 GPa).Furthermore,the electronic mechanism underlying the diverse mechanical behaviors of Zr2 N structures is discussed by analyzing the partial density of states.  相似文献   

5.
Within the framework of the Landau theory of phase transitions and the density functional method, it is shown that the structural transformation from a body-centered cubic phase to a rhombohedral phase revealed in vanadium at 69 GPa is a first-order deformation phase transition close to a second-order phase transition.  相似文献   

6.
钒的高压声速测量   总被引:1,自引:0,他引:1       下载免费PDF全文
俞宇颖  谭叶  戴诚达  李雪梅  李英华  谭华 《物理学报》2014,63(2):26202-026202
采用反向碰撞方法进行了钒冲击实验,利用激光干涉测速技术对V/LiF窗口界面粒子速度剖面进行测量.通过对粒子速度剖面的分析获得了32—88 GPa压力范围内钒的高压声速.实验获得的声速-冲击压力关系在约60 GPa存在间断,表明钒发生了冲击相变.相变压力与静高压实验结果及第一性原理计算结果基本一致.  相似文献   

7.
Single crystal Brillouin and Raman scattering measurements on NH3 in a diamond anvil cell have been performed under pressures up to 26 GPa at room temperature. The pressure dependencies of acoustic velocity, adiabatic elastic constants, and bulk moduli of ammonia from liquid to solid III and solid IV phase have been determined. All the nine elastic constants in orthorhombic structure phase IV were presented for the first time, each elastic constant grows monotonously with pressure and a crossover of the off‐diagonal moduli C12 and C13 was observed at around 12 GPa because of their different pressure derivative values. We also performed ab initio simulations to calculate the bulk elastic moduli for orthorhombic ammonia, the calculated bulk moduli agree well with experimental results. In Raman spectra the very weak bending modes ν2 and ν4 for orthorhombic ammonia are both observed at room temperature, a transition point near 12 GPa is also found from the pressure evolution of the Raman bands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The high-pressure effects are investigated on the structure, magnetic phase transition, and anisotropic elastic properties of the 3d transition-metal semi-borides TM2B (TM?=?Fe, Co) by using the generalized gradient approximation (GGA) within the framework of density functional theory (DFT). At equilibrium spin polarization, calculations show that the Fe2B and Co2B compounds are ferromagnetic (FM). In the applied pressure range from 0 to 90?GPa, the magnetic moment of Fe2B and Co2B slowly decreases and then abruptly drops to zero at 85?GPa, indicating a state transition from the ferromagnetic to the nonmagnetic (NM) state (a first-order quantum phase transition). The collapse of the magnetic moment is accompanied by an abrupt change in the lattice parameters and elastic constants. In addition to this phenomenon, the density of states (DOS), and anisotropic elastic properties are presented at 0?GPa and at the critical transition pressure. Furthermore, I have plotted the three-dimensional (3D) surfaces and planar contours for the Young and bulk moduli of the compounds at several crystallographic planes, ((100) and (001)) to reveal their elastic anisotropy. On the basis of anisotropic elastic properties, I have predicted the easy and hard axes of magnetization for the TM2B compounds.  相似文献   

9.
孙博  刘绍军  祝文军 《物理学报》2006,55(12):6589-6594
采用基于密度泛函理论的平面波赝势方法的第一性原理计算,对过渡金属Fe元素进行自旋极化的总能量计算,能量计算精度取为平均每个原子0.01 eV.通过分析分波能带展宽与能带电子对总能量的贡献,讨论了在不同压强范围下第一性原理计算时Fe原子芯态与价态的合理划分.结果显示,当压强增加到约140 GPa时,3p电子对总能的贡献将不能忽略,而在地心压强下,3 s电子的贡献可以忽略. 关键词: 第一性原理计算 高压 芯态与价态  相似文献   

10.
杨则金  令狐荣锋  程新路  杨向东 《物理学报》2012,61(4):46301-046301
本文使用第一性原理的GGA/RPBE方法研究了Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质. 研究发现两个化合物的体积压缩性几乎相同, 并且证实了在0—50 GPa范围内c轴始终较a轴更难以压缩并且结构始终是稳定的. 通过对内坐标的研究发现了Cr2AlC中Cr离子的内坐标始终大于Cr2GaC中Cr离子的内坐标. 使用准谐德拜模型得到的体弹模量在0 GPa下随着温度的升高而减小, 而在300 GPa下则随着温度的升高而增大. 对德拜温度的研究发现Cr2GaC的值小于Cr2AlC的值, 而对热膨胀系数、Grüneisen参数、熵和热容的计算发现Cr2GaC的值大于Cr2AlC的值. 对电子结构的分析发现Cr2GaC的s和p电子在费米能级处的值大于Cr2AlC的s和p电子的值, 而其他离子的电子分布几乎一致.  相似文献   

11.
The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0--3.0 g/cc (34-115 GPa) along the 2000 K isotherm. We find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. We find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, we find a solid superionic phase characterized by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. In addition, we describe a metastable superionic phase with quenched O disorder.  相似文献   

12.
Two new transition metal dinitrides, ReN2 and WN2, with the P4/mmm structure are investigated by the first-principles calculations. The computed shear moduli of 327 GPa for ReN2 and 334 GPa for WN2 exceed those of all transition metal dinitrides previously reported. The estimated theoretical hardness are 46.3 GPa for ReN2 and 47.9 GPa for WN2, respectively. The calculated high shear moduli and hardness indicate that they are potential ultrahard materials. It is important to note that the computed hardness of the weakest bond are 34.7 GPa (W-N) for WN2 and 33.1 GPa (Re-N) for ReN2, much higher than that of 21.1 GPa (Re-B) for ReB2, which suggests that tetragonal ReN2 and WN2 are probably harder than ReB2. The total and partial electron density of states and the electron localization function for ReN2 and WN2 are analyzed. We attribute the high bulk modulus, shear modulus, and hardness to a three-dimensional covalently bonded framework in tetragonal ReN2 and WN2. Our calculations show that tetragonal ReN2 is expected to be synthesized above 62.7 GPa and tetragonal WN2 may be hard to be synthesized.  相似文献   

13.
14.
杨文龙  韩浚生  王宇  林家齐  何国强  孙洪国 《物理学报》2017,66(22):227101-227101
应用分子模拟方法,建立了聚酰亚胺(polyimide,PI),石墨烯及羧基、氨基、羟基功能化石墨烯模型,探究了聚酰亚胺和石墨烯,聚酰亚胺和功能化石墨烯共混后复合材料的力学性能和玻璃化转变温度(T_g).研究结果表明,羧基修饰的石墨烯与PI复合后材料力学性能增加显著,其杨氏模量和剪切模量分别为4.946 GPa和1.816 GPa.不同官能团修饰的石墨烯引入PI后材料的T_g均有不同程度下降;未修饰的石墨烯与PI复合后,其T_g(559.30 K)较纯PI的T_g(663.57 K)降幅最大;而羧基修饰的石墨烯与PI复合后T_g(601.61 K)降幅最小.计算比较了PI/石墨烯复合材料体系密度、溶解度参数、相互作用能、弹性系数和氢键平均密度,研究发现羧基修饰石墨烯/PI复合材料的密度为1.396 g·cm~(-3),溶解度参数为23.51 J~(1/2)·cm~(-3/2),其相互作用能与氢键平均密度最大,弹性系数显示羧基修饰石墨烯与PI组成的复合材料内部最均匀.计算结果表明,羧基功能化石墨烯可以大幅度提高PI的力学性能,增强石墨烯与PI之间的相互作用可以减少复合材料T_g的降幅程度.此基体间相互作用的研究方法可以作为预测聚合物基纳米复合材料结构与性能的有效工具,以期为材料的设计与应用提供理论指导.  相似文献   

15.
A. Gueddouh 《Phase Transitions》2017,90(10):984-1000
In this paper, spin polarization and pressure effects on the structure, magnetic and anisotropic elastic properties of the 3d transition-metal mono-borides TMB (TM = Mn, Fe) have been investigated by using generalized gradient approximation within the framework of density functional theory. It seems that manganese in MnB carries a higher magnetic moment (1.83 μB) than iron in FeB (1.12 μB). Applied pressure ranges from 0 to 150 GPa, these ferromagnetic compounds show at a certain pressure (143 GPa for MnB and 77 GPa for FeB) a pronounced abrupt collapse of the magnetic moment (first-order quantum phase transitions). Furthermore, elastic properties, including bulk, shear and Young moduli as well as the Poisson ratio are obtained by Voigt–Reuss–Hill approximation. By the elastic stability criteria, it is predicted that MnB and FeB are stable up to the selected pressures. In both cases, mechanical anisotropies are discussed by calculating different anisotropic indexes and factors. The three-dimensional surfaces and planar contours of Young, and bulk moduli of compounds are plotted, at several crystallographic planes ((100), (010) and (001)) to reveal their elastic anisotropy.  相似文献   

16.
Ground-state structures of atomic metallic hydrogen   总被引:1,自引:0,他引:1  
Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).  相似文献   

17.
We present a first principles theoretical framework that accurately accounts for several properties of ice, over a wide pressure range. In particular, we show that, by using a recently developed nonlocal van der Waals functional and by taking into account hydrogen zero point motion, one can properly describe the zero temperature equation of state, the vibrational spectra, and the dielectric properties of ice at low pressure and of ice VIII, a stable phase between 2 and 60?GPa. While semilocal density functionals yield a transition pressure from ice XI to VIII that is overestimated by almost an order of magnitude, we find good agreement with experiments when dispersion forces are taken into account. Zero point energy contributions do not alter the computed transition pressure, but they affect structural properties, including equilibrium volumes and bulk moduli.  相似文献   

18.
The matrix of elastic constants of the fcc phase of solid C60 has been determined experimentally from measurements of the the velocity of 5 MHz ultrasound in single-crystal samples with different crystallographic orientations. The following values were obtained for the elastic moduli: C 11=14.9±0.9 GPa, C 12=8.8±1.0 GPa, and C 44=6.6±0.18 GPa. The results are compared with theoretical estimates of the elastic moduli and data obtained in previous measurements of the elastic characteristics of solid C60. Fiz. Tverd. Tela (St. Petersburg) 40, 173–175 (January 1998)  相似文献   

19.
The Raman spectra of the two-dimensional tetragonal (2D(T)) polymeric phase of C60 have been studied in situ at pressures up to 30 GPa and room temperature. The pressure dependence of the phonon modes shows an irreversible transformation of the material near 20 GPa into a new phase, most probably associated with the covalent bonding between the 2D polymeric sheets. The Raman spectrum of the high-pressure phase is intense and well resolved, and the majority of modes are related to the fullerene molecular cage. The sample recovered at ambient conditions is in a metastable phase and transforms violently under laser irradiation: the transformed material contains mainly dimers and monomers of C60 and small inclusions of the diamond-like carbon phase. The photoluminescence spectra of the 2D(T) polymer of C60 were measured at room temperature and pressure up to 4 GPa. The intensity distribution and the pressure-induced shift of the photoluminescence spectrum drastically differ from those of the C60 monomer. The deformation potential and the Grüneisen parameters of the 2D(T) polymeric phase of C60 have been determined and compared with those of the pristine material.  相似文献   

20.
Abstract

The structural behaviour of Pm metal has been investigated up to 60 GPa of pressure using a Diamond Anvil Cell (DAC) and the energy dispersive X-ray diffraction technique. The room temperature/pressure structural form of Pm is dhcp and it transforms to a fcc phase by 10 GPa. This cubic phase of the metal converts by 18 GPa to a third phase, which has frequently been referred to as representing a distorted fcc structure. This latter form of Pm was retained up to 60 GPa, the maximum pressure studied, but subtle changes in the X-ray spectra between 50 and 60 GPa hinted that an additional structural change could be forthcoming at higher pressures. From the experimental data a bulk modulus (B0) of 38 GPa and a B0′ constant of 1.5 were calculated using the Birch equation. This modulus for Pm is in accord with the moduli reported for the neighboring lanthanide metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号