首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈立冰  路洪  刘玉华 《中国物理》2005,14(7):1323-1328
提出用三粒子纠缠态作量子信道远程操纵单比特旋转的理论方案。首先,我们利用最大纠缠的GHZ态的性质远程操纵单比特旋转,其保真度和成功几率均为1。 我们还提出了两个用部分纠缠的GHZ态作量子信道实现保真度为1的远程操纵单比特旋转的方案。这些方案的特点是,两地之间还存在一第三者,他作为监控方参与量子远程操纵过程,特别地,当量子信道为部分纠缠态时,他能矫正被非理想量子信道致畸的量子态。除了GHZ型态外,我们还证明了W型态亦可用作量子信道远程操纵单比特旋转,但后者的成功几率总是小于前者。  相似文献   

2.
We propose schemes for quantum information splitting by using asymmetric multi-particle entangled state. Explicit protocols for the quantum information splitting of a single-qubit state and a two-qubit entangled state via asymmetric three-particle entangled state are illustrated. The four-particle asymmetric entangled state are also used as quantum channel to split the unknown two-qubit entangled state. We also consider the security against certain eavesdropping attacks.  相似文献   

3.
We investigate the controlled implementation of a non-local CNOT operation using a three-qubit entangled state. Firstly, we show how the non-local CNOT operation can be implemented with unit fidelity and unit probability by using a maximally entangled GHZ state as controlled quantum channel. Then, we put forward two schemes for conclusively implementing the non-local operation with unit fidelity by employing a partially entangled pure GHZ state as quantum channel. The feature of these schemes is that a third side is included, who may participate the process of quantum non-local implementation as a supervisor. Furthermore, when the quantum channel is partially entangled, the third one can rectify the state distorted by imperfect quantum channel. In addition to the GHZ class state, the W class state can also be used to implement the same non-local operation probabilistically. The probability of successful implementation using the W class state is always less than that using the GHZ class state.  相似文献   

4.
We present a scheme for controlled remote implementation of an arbitrary single-qubit operation by using partially entangled states as the quantum channel. The sender can remote implement an arbitrary single-qubit operation on the remote receiver’s quantum system via partially entangled states under the controller’s control. The success probability for controlled remote implementation of quantum operation can achieve 1 if the sender and the controller perform proper projective measurements on their entangled particles. Moreover, we also discuss the scheme for remote sharing the partially unknown operations via partially entangled quantum channel. It is shown that the quantum entanglement cost and classical communication can be reduced if the implemented operation belongs to the restrict sets.  相似文献   

5.
We present two schemes for hybrid bidirectional controlled quantum communication (HBCQC) via six- and nine-qubit entangled states as the quantum channel, respectively. In these schemes, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to teleport an unknown single-qubit state to Bob, at the same time, Bob wishes to help Alice remotely prepares an arbitrary single- and two- qubit state, respectively. It is shown that, only if the two senders and the controller collaborate with each other, the HBCQC can be completed successfully. We demonstrate, in our both schemes, the total success probability of the HBCQC can reach 1, that is, the schemes are deterministic.  相似文献   

6.
We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.  相似文献   

7.
We propose two schemes for quantum state sharing of single-qubit state by using three-qutrit and three-qudit entangled states as quantum channel, respectively. After the sender performs a non-symmetric basis measurement on her particles, and the controller operates a single-particle measurement on his particle, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. The analysis of the security in the schemes has been given.  相似文献   

8.
陈立冰  路洪 《中国物理》2004,13(1):14-18
We propose two different schemes for probabilistic implementing a non-local multiple qubits controlled-not operation via partially entangled quantum channels. The overall physical resources required for accomplishing these schemes are different, and the successful implementation probabilities are also different.  相似文献   

9.
《Physics letters. A》2003,314(4):267-271
Entangled states of the W-class are considered as a quantum channel for teleportation of an entangled state and as well the state to be teleported via a multiparticle quantum channel. Using an introduced unitary transformation in the teleportation schemes based on the multiparticle Greenberger–Horne–Zeilinger channel it is found a set of protocols main feature of which is a collection of non-local recovering operators.  相似文献   

10.
We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.  相似文献   

11.
《中国物理 B》2021,30(9):90302-090302
Due to the unavoidable interaction between the quantum channel and its ambient environment, it is difficult to generate and maintain the maximally entanglement. Thus, the research on multiparty information transmission via non-maximally entangled channels is of academic value and general application. Here, we utilize the non-maximally entangled channels to implement two multiparty remote state preparation schemes for transmitting different quantum information from one sender to two receivers synchronously. The first scheme is adopted to transmit two different four-qubit cluster-type entangled states to two receivers with a certain probability. In order to improve success probabilities of such multicast remote state preparation using non-maximally entangled channels, we put forward the second scheme, which deals with the situation that is a synchronous transfer of an arbitrary single-qubit state and an arbitrary two-qubit state from one sender to two receivers. In particular, its success probability can reach 100% in principle, and independent of the entanglement degree of the shared non-maximally entangled channel. Notably, in the second scheme, the auxiliary particle is not required.  相似文献   

12.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state. The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

13.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

14.
We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.  相似文献   

15.
We propose two schemes for quantum dense coding without Bell states measurement. One is deterministic, the other is probabilistic. In the deterministic scheme, the initial entangled state will be not destructed. In the probabilistic scheme, the initial unknown nonmaximal entangled state will be transformed into a maximalentangled one. Our schemes require two auxiliary particles and perform single-qubit measurements on them. Thus our schemes are simple and economic.  相似文献   

16.
We show how a non-local quantum controlled-NOT (CNOT) gate with multiple targets can be implemented with unit fidelity and unit probability. The explicit quantum circuit for implementing the operation is presented. Two schemes for probabilistic implementing the operation via partially entangled quantum channels with unit fidelity are put forward. The overall physical resources required for accomplishing these schemes are different, and the successful implementation probabilities are also different.  相似文献   

17.
A scheme for probabilistic teleportation of an unknown three-qubit entangled state via a five-qubit non-maximally entangled cluster state as quantum channel is proposed. In this scheme, the sender performs two Bell state and a single-qubit measurements on the qubits, the receiver can reconstruct the original state with a certain probability by making appropriate unitary transformations and controlled-not (C-not) operations. As a result, the probability of successful teleportation is determined by the smallest two of the coefficients’ absolute values of the cluster state. The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme, which can greatly reduce the amount of entanglement resources and need less classical bits.  相似文献   

18.
With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.  相似文献   

19.
We present a scheme for teleporting an unknown, two-particle entangled state with a message from a sender (Alice) to a receiver (Bob) via a six-particle entangled channel. We also present another scheme for teleporting an unknown one-particle entangled state with a message transmitted in a two-way form between the same sender and receiver via a five-qubit cluster state. One-way hash functions, Bell-state measurements, and unitary operations are adopted in these two schemes. Our schemes use the physical characteristics of quantum mechanics to implement delegation, signature, and verification processes. Moreover, a quantum key distribution protocol and a one-time pad are adopted in these schemes.  相似文献   

20.
We propose some schemes for remote preparation of arbitraryhigh-dimensional equatorial entangled state via a single bipartitehigh-dimensional entangled state as quantum channel. We firstlypresent the remote preparation of bipartite three- and d-dimensionalequatorial entangled state by using a single entangled qutrit andqudit pair, respectively, and then directly generalize the schemesto multipartite case. The cases of the quantum channel beingnon-maximally two-qutrit and two-qudit entangled state are alsoconsidered, respectively. In these schemes the required resourcesare single-particle projective measurement, appropriate localunitary operation, auxiliary particle, and high-dimensional C-NOToperation. It is shown that the entanglement resource and classicalcommunication cost are both greatly reduced in our schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号