首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Platinum is the most widely used catalyst in fuel cell electrodes. Designing improved catalysts with low or no platinum content is one of the grand challenges in fuel cell research. Here, we investigate electronic structures of Pt(4) and Pt(3)Co clusters and report a comparative study of adsorption of H(2), O(2), and CO molecules on the two clusters using density functional theory. The adsorption studies show that H(2) undergoes dissociative chemisorption on the tetrahedral clusters in head on and side on approaches at Pt centers. O(2) dissociation occurs primarily in three and four center coordinations and CO prefers to adsorb on Pt or Co atop atoms. The adsorption energy of O(2) is found to be higher for the Co doped cluster. For CO, the Pt atop orientation is preferred for both Pt(4) and Pt(3)Co tetrahedral clusters. Adsorption of CO molecule on tetrahedral Pt(3)Co in side on approach leads to isomerization to planar rhombus geometry. An analysis of Hirshfeld charge distribution shows that the clusters become more polarized after adsorption of the molecules.  相似文献   

2.
Liu Y  Chen Z  Ren J  Zhao XQ  Cheng P  Zhao B 《Inorganic chemistry》2012,51(14):7433-7435
Two novel two-dimensional 3d-4f networks based on planar Co(4)Ln(2) clusters supported by rigid 4'-(4-carboxyphenyl)-2,2':6',2"-terpyridine afford the first examples of high-dimensional networks with 3d-4f clusters behaving as single-molecule magnets.  相似文献   

3.
Two-dimensional (2D) 59Co correlation spectroscopy (COSY)/double-quantum-filtered (DQF)COSY experiments are reported for three tetrahedral mixed-metal clusters HFeCo3(CO)11L with L = PPh3, P(OMe)3, and PCy3 (Cy = cyclohexyl) in which the L-substituted Co center is chemically different from the other two. The 2D 59Co COSY and DQFCOSY NMR spectra of these clusters in solution prove the existence of a scalar coupling constant between the 59Co nuclei. To determine this value for each cluster, 2D 59Co COSY and DQFCOSY NMR spectra have been simulated by numerical density-matrix calculations. The predicted spectra mimic well the features of the experimental spectra if a scalar coupling is introduced between the Co nuclei. It was initially observed that the scalar coupling constants between the Co nuclei obtained from the 2D COSY and DQFCOSY NMR spectra differed significantly. In contrast to the 2D COSY spectra, the diagonal and cross peaks are of comparable intensity in the 2D DQFCOSY spectra, which leads to a considerable increase in the accuracy of the determination of the scalar coupling constant.  相似文献   

4.
The core-shell clusters Co(13)@TM(20) with TM = Mn, Fe, Co, and Ni are investigated within first-principles simulations in the framework of density-functional theory. Huge magnetic moments have been found in the Co(13)@TM(20) clusters especially for the Co(13)@Mn(20) cluster with a giant magnetic moment of 113 μ(B). The large magnetic moments are mainly due to the special core-shell structure and the weak interaction between the TM and other atoms.  相似文献   

5.
The dipole polarizabilities of Co(n)Bz(m), (n, m = 1-4, m = n, n + 1) clusters are studied by means of an all-electron gradient-corrected density functional theory and finite field method. The dipole moments are relatively large for most of the clusters, implying their asymmetric structures. The total polarizability increases rapidly as cluster size, whereas the average polarizability shows "odd-even" oscillation with relatively large values at (n, n + 1). The polarizabilities exhibit clear shape-dependent variation, and the sandwich structures have systematically larger polarizability and anisotropy than the rice-ball isomers. The dipole polarizabilities are further analyzed in terms of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, ionization potential, and electron delocalization volume. We conclude that the polarizability variations are determined by the interplay between the geometrical and electronic properties of the clusters.  相似文献   

6.
A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound [Co(4)(triazolate)(2)(OBA)(3)], I, possessing Co(4) clusters. The Co(4) clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS(2) layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS(2) layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co(4) clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound [Co(2)(μ(3)-OH)(μ(2)-H(2)O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co(4) clusters.  相似文献   

7.
Reaction of aqueous/ethanolic solutions of CoCl2.6H2O and nitrilotripropionic acid (H3ntp=N(CH2CH2COOH)3) in the presence of potassium hydroxide affords the hydroxy-bridged tetranuclear cluster [Co4mu3-OH)2(H2O)6(ntp)2].2H2O (1). The Ni(II) analogue [Ni4(mu3-OH)2(H2O)6(ntp)2].2H2O (2) can also be isolated using aqueous solutions and Ni(SO4).7H2O as metal salt. With small changes in reaction conditions the methoxy-bridged analogue, [Ni4(mu3-OMe)2(H2O)6(ntp)2](3), can also be isolated. In these tetramers the M(II) ions are oxygen-bridged and exhibit a defect dicubane-like core with two missing vertices. The magnetic properties have been studied for all three clusters and reveal competing antiferromagnetic and ferromagnetic interactions between the four Co(II) ions in 1 and ferromagnetic coupling between the four Ni(II) ions in 2 and 3. In all three compounds the individual clusters order antiferromagnetically at Neel temperatures below 1 K.  相似文献   

8.
We present a scanning tunnel microscopy study of Co clusters grown through vapor deposition on Al(2)O(3) thin films over NiAl(100) at different coverages and temperatures. Formation of Co clusters was observed at 90, 300, 450, and 570 K. At the three lower temperatures, we find narrow cluster size distributions and the mean sizes (with a diameter of 2.6 nm and a height of 0.7 nm) do not change significantly with the coverage and temperature, until the clusters start to coalesce. Even on 3-4-nm-wide crystalline Al(2)O(3) strips where the deposited Co atoms are confined, the same features sustain. Only at 570 K the normal growth mode where the cluster size increases with the deposition coverage is observed, although the data are less conclusive. A simple modeling of kinetic surface processes on a strip confirms the normal growth mode, but fails to show a favored size unless additional energetic constraints are applied on the cluster sizes. Increasing Co coverages to cluster coalescence, a larger preferable size (mean diameter of 3.5 nm and height of 1.4 nm) appears for growth at 450 K. These two sizes are corroborated by morphology evolution of high Co coverages deposited at 300 K and annealed to 750 K, in which the coalescence is eliminated and the two preferable geometries appear and coexist.  相似文献   

9.
The electronic and magnetic properties of small Co(n)Mn(m) and Co(n)V(m) (m + n < or = 6) clusters are systematically studied using density functional theory. The results show that Co and V atoms prefer to aggregate in Co-Mn and Co-V clusters, respectively. Significant magnetic moment enhancement in Co-Mn clusters with Mn doping and reduction in Co-V clusters with V doping are found, consistent with experiment results for larger clusters [Phys. Rev. Lett. 2007, 98, 113401]. The results are discussed by analyzing the magnetic coupling type and local magnetic moment on each atoms. Density of states and vertical ionization potentials are calculated and show cluster size dependent behavior.  相似文献   

10.
Nanosized Co clusters (of about 3 nm size) were unambiguously identified in Co-doped ZnO thin films by atom probe tomography. These clusters are directly correlated to the superparamagnetic relaxation observed by ZFC/FC magnetization measurements. These analyses provide strong evidence that the room-temperature ferromagnetism observed in the magnetization curves cannot be attributed to the observed Co clusters. Because there is no experimental evidence of the presence of other secondary phases, our results reinforce the assumption of a defect-induced ferromagnetism in Co-doped ZnO diluted magnetic semiconductors.  相似文献   

11.
Samples of Co-MCM-41 with different pore diameters have been synthesized using organic templates with different alkyl chain lengths. The reducibility of cobalt in these highly stable samples was investigated by TPR and X-ray absorption spectroscopy. We have found that the reducibility correlates strongly with the pore diameter of the MCM-41, with the cobalt incorporated in the smaller pore MCM-41 being more resistant to complete reduction. It is proposed that the distribution of cobalt ions in the pore wall is affected by both the preparation procedure and the pore diameter. The size of the metallic Co clusters formed after different reducing treatments correlates linearly with the pore size, giving direct evidence for the effect of the radius of curvature on reducibility. Complete cobalt reduction after TPR causes an inverse variation of the cluster size with the pore size, resulting from differences in the density of Co clusters and from differences in the rate of Co migration and aggregation outside the pores of MCM-41 with different pore sizes.  相似文献   

12.
Magnetic moments of bare cobalt clusters Co(n) (n=7-32) and benzene-capped cobalt clusters Co(n)(bz)(m) have been measured at temperatures ranging from 54 to 150 K using a molecular beam deflection method. It was observed that Co(12-32) produced at temperatures greater than approximately 100 K display high-field-seeking behavior at all temperatures in the range investigated, indicating that they are superparamagnetic species. At temperatures below approximately 100 K, the field-on beam profiles of Co(7-11) and some larger clusters displayed substantial symmetric broadening, indicating that some fraction of the clusters in the beam were no longer superparamagnetic, but rather were in a blocked (locked-moment) state. In the superparamagnetic regime (T=150 K) Co(n) clusters in the n=7-32 size range were found to possess per-atom moments ranging from 1.96+/-0.04 micro(b)(Co(24)) to 2.53+/-0.04 micro(b)(Co(16)), significantly above the bulk value of 1.72 micro(b). Locked-moment isomers were found to display moments of approximately 1 micro(b) per atom. Cobalt clusters containing a layer of adsorbed benzene molecules were found to possess significantly lower moments per cobalt atom than the corresponding bare cobalt clusters.  相似文献   

13.
A series of mixed-valent heterometallic pentanuclear Co(III)(3)Co(II)RE(III) (RE = Gd (1), Tb (2), Y (3)) clusters have been rationally assembled by taking advantage of a bifunctional ligand with o-vanillin and tripodal tris(hydroxymethyl)aminomethane units. Structural determinations reveal that all compounds are isomorphous and possess a T-shaped Co(4)RE core, which comprises two nearly linear Co(2)RE subunits sharing a common RE ion. Their magnetic properties were thoroughly studied. The static magnetic susceptibility studies of 1 demonstrate the presence of weak ferromagnetic interactions between the magnetic centres and magnetic anisotropy reflected by the single ion zero-field splitting (ZFS) D term. Both 1 and 2 behave magnetically as heterodinuclear metal systems, while the magnetic behaviour of 3 is identical to an isolated Co(II) ion. Moreover, alternating-current susceptibility measurements did not exhibit any out-of-phase signal, suggesting that slow magnetic relaxation is absent above 2 K within them. These isomorphous Co(4)RE clusters offer an opportunity to systematically probe the contribution of different metal ions to the overall magnetic behaviour in Co(II)-RE(III) systems.  相似文献   

14.
采用模板合成法制备了在脱铝Y分子筛纳米腔中含有Co, Mn,和Co/Mn混合物的三核金属簇合物的复合物催化剂,包括[Mn3(O)(CH3COO)6-(py)3]-Y,[Co3(O)(CH3COO)6-(py)3],[Co2Mn(O)(CH3COO)6-(py)3]-Y和[CoMn2(O)(CH3COO)6-(py)3]-Y],并运用傅里叶变换红外光谱、紫外-可见光光谱、前场扫描电镜、X射线衍射和原子吸收光谱对其进行了表征.包裹的金属簇合物在环己烯环氧化反应中表现出较高的催化活性,反应以H2O2/O2为氧化剂,在加热机械搅拌下进行,所得环氧化物产率在82.5%?90.7%.在该催化体系中, NaBr用作氧化助剂可以提高反应性能.在所制多相催化体系中,含单核的金属簇合物催化活性更高,其中以Mn3(O)-DAZY化合物的效率最高.各催化剂活性顺序为Mn3(O)-DAZY> Co3(O)-DAZY> Mn2Co(O)-DAZY> MnCo2(O)-DAZY.  相似文献   

15.
A synergistic approach combining the experimental photoelectron spectroscopy and theoretical electronic structure studies is used to probe the geometrical structure and the spin magnetic moment of Co(n)(pyridine)(m) (-) clusters. It is predicted that the ground state of Co(pyridine)(-) is a structure where the Co atom is inserted in a CH bond. However, the insertion is marked by a barrier of 0.33 eV that is not overcome under the existing experimental conditions resulting in the formation of a structure where Co occupies a site above the pyridine plane. For Co(2)(pyridine)(-), a ground-state structure is predicted in which the Co(2) diametric moiety is inserted in one of the CH bonds, but again because of a barrier, the structure which matches the photoelectron spectrum is a higher-energy isomer in which the Co(2) moiety is bonded directly to nitrogen on the pyridine ring. In all cases, the Co sites have finite magnetic moments suggesting that the complexes may provide ways of making cluster-based magnetic materials.  相似文献   

16.
Two new Co(II) coordination polymers with a pyridinedicarboxylate ligand, {[Co(L)(H(2)O)]·H(2)O}(n) (1) and [Co(3)(HCOO)(2)(L)(2)(H(2)O)(2)](n) (2) (H(2)L = 5-(pyridin-4-yl)isophthalic acid), have been synthesized and structurally characterized by elemental analysis, IR, XRPD, and single-crystal X-ray diffraction. Structure analyses show that complex 1 has a two-dimensional (2D) double-layered structure with a (3,6)-connected kgd topology based on [Co(2)O(2)] units, while complex 2 takes a three-dimensional (3D) structure with (3,6)-connected rtl topology network based on linear [Co(3)(HCOO)(2)(CO(2))(4)] clusters with triple carboxylate bridges. Magnetic investigation indicates that besides strong spin-orbit coupling of Co(II) ions, ferromagnetic and weak ferromagnetic exchange interactions between Co(II) ions in the Co(2) and Co(3) clusters exist in 1 and 2, respectively. The FC/ZFC magnetization behaviors for both of them suggest the absence of any long-range magnetic ordering.  相似文献   

17.
Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe M?ssbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic.  相似文献   

18.
We investigated the adsorption of C(2)H radical on small cobalt clusters by mass spectrometry and by measuring the photoelectron spectra of Co(n)C(2)H(-) (n = 1-5) cluster anions. The most stable structures of Co(n)C(2)H(-) (n = 1-5) and their neutrals were determined by comparing the experimental results with theoretical calculations. Our studies show that C(2)H radical still maintains its integrity as a structural unit in Co(n)C(2)H(-) clusters, rather than being divided by Co(n) clusters. The most stable isomers of Co(1-2)C(2)H(-) clusters are linear with the C(2)H interacting with only one Co atom, while those of Co(3-5)C(2)H(-) cluster anions are quasi-planar structures with the carbon-carbon bonds bending slightly toward the Co(3-5) clusters. The carbon-carbon bond of C(2)H is lengthened more in Co(3-5)C(2)H(-) clusters than in Co(1-2)C(2)H(-).  相似文献   

19.
The adsorption of OOH, the main product of the first step in the O2 reduction on Pt(1 1 1) surfaces, is studied on Pt-based bimetallic three-atom clusters. Cr, Co, and Ni are better adsorption sites for OOH than Pt, but the strong adsorption might not favor the dissociation of OOH. However, the presence of Cr, Co, or Ni in the vicinity of a Pt atom increases its electron density, enhancing the Pt ability to transfer electrons to oxygenated species. Thus, Cr, Co, or Ni in the subsurface, rather than on the exposed surface, may contribute favorably to catalyze the O2 reduction.  相似文献   

20.
We present the synthesis, characterization of the structures, and magnetic properties of five isostructural dodecanuclear coordination clusters of Ni(II) and Co(II): [Co(12)(bm)(12)(NO(3))(O(2)CMe)(6)(EtOH)(6)](NO(3))(5) (1), [Ni(12)(bm)(12)(NO(3))(O(2)CMe)(6)(H(2)O)(3)(EtOH)(3)](NO(3))(5)·2H(2)O (2), mixed-metal composition (Ni/Co 1:1) [Co(6)Ni(6)(bm)(12)(NO(3))(O(2)CMe)(6)(NO(3))(5) (3), and [M(12)(bm)(12)(NO(3))(O(2)CMe)(6)(EtOH)(6)](ClO(4))(5) (M=Co (4), Ni (5)), in which Hbm=(1H-benzimidazol-2-yl)methanol. They consist of analogous structural cores that are constructed by three cubanes (M(4)O(4)) that surround the templating nitrate and bridging auxiliary acetate and the directing ligands bm. They have different magnetic behaviors. Whereas there is the absence of the out-of-phase ac susceptibility (χ') for the Ni(II)-based compounds 2 and 5, the Co(II)-containing compounds 1, 3, and 4 have prominent χ' signals that exhibit frequency dependence, which indicates slow magnetic relaxation behavior above 1.8 K. In particular, the larger perchlorate counterions in 4 further change the overall correlation interaction between clusters, thus leading to an enhanced blocking temperature for the less-symmetrical 4 (pseudo-C(3)) relative to 1 and 3 (true C(3)). Interestingly, electrospray ionization mass spectrometry (ESI-MS) indicates that the three dodecanuclear clusters of 1-3 retain their compositions in solution. The mixed-metal cluster cores of 3 are formed based on the nature of the interchangeability between metal centers in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号