首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, economic and sensitive method for selective determination of As(III) and As(V) in water samples is described. The method is based on selective coprecipitation of As(III) with Ce(IV) hydroxide in presence of an ammonia/ammonium buffer at pH 9. The coprecipitant was collected on a 0.45 µm membrane filter, dissolved with 0.5 mL of conc. nitric acid and the solution was completed to 2 or 5 mL with distilled water. As(III) in the final solutions was determined by graphite furnace atomic absorption spectrometry (GFAAS). Under the working condition, As(V) was not coprecipitated. Total inorganic arsenic was determined after the reduction of As(V) to As(III) with NaI. The concentration of As(V) was calculated by the difference of the concentrations obtained by the above determinations. Both the determination of arsenic with GF-AAS in presence of cerium and the coprecipitation of arsenic with Ce(IV) hydroxide were optimised. The suitability of the method for determining inorganic arsenic species was checked by analysis of water samples spiked with 4–20 µg L?1 each of As(III) and As(V). The preconcentration factor was found to be 75 with quantitative recovery (≥95%). The accuracy of the present method was controlled with a reference method based on TXRF. The relative error was under 5%. The relative standard deviations for the replicate analysis ( n?=?5) ranged from 4.3 to 8.0% for both As(III) and As(V) in the water samples. The limit of detection (3σ) for both As (III) and As(V) were 0.05 µg L?1. The proposed method produced satisfactory results for the analysis of inorganic arsenic species in drinking water, wastewater and hot spring water samples.  相似文献   

2.
A method for direct de termination of total in organic arsenic (III+V), arsenic (III) and dimethylarsinate (DMA) in sea water was developed by combining continuous‐flow selective hydride generation and inductively coupled plasma mass spectrometry (ICP‐MS) is presented. The principle underlying selective hydride generation is based on proper control of the reaction conditions for achieving separation of the respective arsenic species. The effects of pH and composition of reaction media on mutual interference between the arsenic species were investigated in detail. The results indicate that the appropriate media for the selective determination of total in organic arsenic, DMA and As(III) are 6 M HNO3, acetate buffer at pH = 4.63 and citrate buffer at pH = 6.54, respectively. The concentrations of total inorganic arsenic species, As(III+V), and As(III) were respectively deter mined and that of As(V) was obtained by the difference between them. As to the concentration of DMA, it was obtained after correction from the interference caused by As(III) and As(V). By following the established procedure, the detection lim its (as based on 3‐sigma criterion) for As(III+V), As(III) and DMA were 0.050, 0.009, and 0.002 ng/mL, respectively. There liability of the pro posed method was evaluated in terms of precision and spike addition. The results indicated that the precision of better than 3% and spike recovery of 95 to 105% for all the arsenic species tested in the natural sea water samples can be obtained.  相似文献   

3.
An analytical method for the determination of inorganic arsenic in fish samples using HPLC-ICP-MS has been developed. The fresh homogenised sample was subjected to microwave-assisted dissolution by sodium hydroxide in ethanol, which dissolved the sample and quantitatively oxidised arsenite (As(III)) to arsenate (As(V)). This allowed for the determination of inorganic arsenic as a single species, i.e. As(V), by anion-exchange HPLC-ICP-MS. The completeness of the oxidation was verified by recovery of As(V) which was added to the samples as As(III) prior to the dissolution procedure. The full recovery of As(V) at 104±7% (n=5) indicated good analytical accuracy. The uncertified inorganic arsenic content in the certified reference material TORT-2 was 0.186±0.014 ng g–1 (n=6). The method was employed for the determination of total arsenic and inorganic arsenic in 60 fish samples including salmon from fresh and saline waters and in plaice. The majority of the results for inorganic arsenic were lower than the LOD of 3 ng g–1, which corresponded to less than one per thousand of the total arsenic content in the fish samples. For mackerel, however, the recovery of As(III) was incomplete and the method was not suited for this fat-rich fish.  相似文献   

4.
A solid phase extraction (SPE) procedure based on Amberlite IRA 900 resin was developed for speciation and separation of inorganic arsenic species (III, V) and total As in water samples. The As species and total As in eluent solutions were determined by electrothermal atomic absorption spectrometry (ETAAS) using Ni chemical modifier with 1200°C pyrolysis temperature. Experimental parameters such as pH value, sample volume, flow rate, volume and concentration of eluent solution for As(V) were optimised and 98.0 ± 1.9% recovery was found at pH 4.0. Experimental adsorption capacity of the resin for As(V) was investigated and 229.9 mg g1 was found. Under optimised experimental conditions, instrumental parameters such as limit of detection (LOD) and limit of quantification (LOQ) found were 0.126 and 0.420 µg L1, respectively. Interference effects of coexisting ions in the sample matrix on the recovery of As(V) were investigated. Concentration of As(III) was obtained by subtracting As(V) concentration found at pH 4.0 from total As(III + V) found at pH 8.0. The accuracy of the method proposed by using the resin was tested for analysing As species in a waste water standard reference material (SRM, CWW-TM-D) and spiked real water samples with recovery above 95%. The method proposed was also applied to the determinations of As species and total As in underground hot waters and tap water with relative error below 3%.  相似文献   

5.
Ficklin WH 《Talanta》1983,30(5):371-373
The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 x 8; 100-200 mesh, acetate form) in a 10 cm x 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 mug l .  相似文献   

6.
《Electroanalysis》2004,16(23):1956-1963
A simple procedure is described for the potentiometric stripping of arsenic with a wall‐jet cell by means of potentiostatic co‐deposition of gold and arsenic at a glassy‐carbon electrode and subsequent chemical stripping with Au(III). Optimum medium containing 160 mg L?1 of Au(III) in HCl 0.1 M, where it is possible to speciate As(III) and As(V). As(V) was electrodeposited directly without prior chemical reduction at working electrode. As(III) was first determined at an electrodeposition potential of ?0.1 V. Afterwards, total arsenic was determined by an electrodeposition potential of ?0.7 V, from the area of peak obtained of the differential stripping potentiogram by using the standard addition method. The original As(V) concentration in the sample was calculated by difference. The possibilities of the optimized method were demonstrated by determinations of As(III), As(V) and total arsenic in samples of polluted water.  相似文献   

7.
Ficklin WH 《Talanta》1990,37(8):831-834
Arsenic was partially extracted with 4.OM hydrochloric acid, from samples collected at 25-cm intervals in a 350-cm column of sediment at Milltown Reservoir, Montana and from a 60-cm core of sediment collected at the Cheyenne River Embayment of Lake Oahe, South Dakota. The sediment in both reservoirs is highly contaminated with arsenic. The extracted arsenic was separated into As(III) and As(V) on acetate form Dowex 1-X8 ion-exchange resin with 0.12M HCl eluent. Residual arsenic was sequentially extracted with KClO(3) and HCl. Arsenic was determined by graphite-furnace atomic-absorption spectrometry. The analytical results define oxidized and reduced zones in the sediment columns.  相似文献   

8.
李勋  汪正浩 《中国化学》2007,25(3):295-299
A new direct procedure for the determination of inorganic arsenic species was developed by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS) with selective electrochemical reduction. The determination of inorganic arsenic species is based on the fact that As(Ⅲ) shows significantly higher absorbance at low electrolytic currents than As(Ⅴ) in 0.3 mol·L^-1 H2SO4. The electrolytic current used for the determination of As(Ⅲ) without considerable interferences of As(Ⅴ) was 0.4 A, whereas the current for the determination of As(Ⅲ) and As(Ⅴ) was 1.2 A. For equal concentrations of As(Ⅲ) and As(Ⅴ) in a sample, the interferences of As(Ⅴ) during the As(Ⅲ) determination were smaller than 5%. The absorbance for As(Ⅴ) could be calculated by subtracting that for As(Ⅲ) measured at 0.4 A from the total absorbance for As(Ⅲ) and As(Ⅴ) measured at 1.2 A, and then the concentration of As(Ⅴ) can be obtained by its calibration curve at 1.2 A. The methodology developed provided the detection limits of 0.3 and 0.6 ng·mL^-1 for As(Ⅲ) and As(Ⅴ), respectively. The relative standard deviations were of 3.5% for 20 ng·mL^-1 As(Ⅲ) and 3.2% for 20 ng·mL^-1 As(Ⅴ). The method was successfully applied to determination of soluble inorganic arsenic species in Chinese medicine.  相似文献   

9.
Neutron activation analysis (NAA) methods were employed for the determination of total arsenic, and water soluble As(III) and As(V) compounds in freshwater fish/shellfish and plant samples from Southern Thailand. Total arsenic concentrations varied from 0.05 to 425 mg kg−1. Water soluble arsenic species were separated by solvent extraction using ammonium pyrrolidinedithiocarbamate (APDC)/methylisobutylketone (MIBK) followed by NAA. The water soluble As(III) and As(V) levels varied from 0.07 to 26.4 and 0.03 to 22.9 mg kg−1, respectively. The As(III) and As(V) detection limits were 0.007 for fish/shellfish, 0.005 for As(III) and 0.006 mg kg−1 for As(V) in plants. This separation method allows for the determination of water soluble As(III) and As(V) using commonly available and inexpensive laboratory equipment and chemicals, which can be coupled to a variety of quantification techniques.  相似文献   

10.
Electrochemistry and ultrafiltration membrane methods (electro‐oxidation and liquid phase polymer based retention technique LPR, respectively) were coupled to remove As(III) inorganic species from aqueous solutions. Our main objective was to achieve an efficient extraction of arsenic species by associating a polymer‐assisted liquid phase retention procedure, based on the As(V) adsorption properties of cationic water‐soluble polymers, with the electrocatalytic oxidation process of As(III) into its more easily removable analog As(V). The exhaustive oxidation of As(III)–As(V) was readily performed in high yield at iridium oxide film modified carbon felt electrodes in the presence of different water‐soluble poly(quaternary ammonium) salts acting also as supporting electrolyte. The progress of the macro‐scale oxidation of As(III)–As(V) was followed using iridium oxide film modified glassy carbon electrodes. Finally, a study on arsenic retention by LPR‐technique performed on fully oxidized solutions of arsenic, showing that complete (100%) retention of the arsenic could be achieved using a 20:1 polyammonium:As(III) mole ratio. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Some water and soil extracts polluted with arsenic, and a sewage sludge certified for total arsenic have been analysed by high‐performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC–ICP–MS) and hydride generation–gas chromatography– quartz furnace atomic absorption spectrometry (HG–GC–QFAAS techniques.) Detection limits in the range of 200–400 and 2–10 ng l−1 respectively allowed the determination of inorganic [As(III), As(V)] and methylated (DMA, MMA, TMAO) arsenic species present in these samples. Results obtained by both methods are well correlated overall, whatever the arsenic chemical form and concentration range (8–10 000 μg l−1). Comparison of these results enabled us to point out features and disadvantages of each analytical method and to reach a conclusion that they are suitable for arsenic speciation in these environmental matrices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
An inductively coupled plasma atomic emission spectrometric (ICP-AES) method was developed for speciation and simultaneous determination of Cr and As, since these two analytes are commonly determined in various water samples in order to assess their toxicity. The objective of this research was to study the speciation of Cr(III), Cr(VI) in the presence of As(III) and/or As(V) using solid phase extraction (SPE) and ICP-AES. For these measurements, four spectral lines were used for each analyte with the purpose of selecting the most appropriate for each element. Finally with the use for first time of a cation-exchange column filled with benzosulfonic acid and elution with HCl, the speciation in solutions which contained [Cr(III)?+?Cr(VI)?+?As(V)] and [Cr(III)?+?Cr(VI)?+?As(III)] was examined. It was demonstrated that the separation of the two chromium species is almost quantitative and the simultaneous determination of chromium species and total arsenic analytes is possible, with very good performance characteristics. The estimated limits of detection for Cr(III), Cr(VI), As(III) and/or As(V) were 0.9?µg?L?1, 1.1 µg?L?1, 4.7 µg?L?1 and 4.5 µg?L?1 respectively, the calculated relative standard deviations (RSDs) were 3.8%, 4.1%, 5.2% and 5.1% respectively, and finally the accuracy of the methods was estimated using a certified aqueous reference material and found to be 5.6% and 4.8% for Cr(III) and Cr(VI) respectively. The method was applied to the routine analysis of various water samples.  相似文献   

13.
Practical procedures are given for determination of arsenic(III) and (V) in hydrofluoric acid by means of hydride generation and atomic absorption spectrometry. Arsenic(III) can be determined by direct generation of arsine with sodium borohydride in hydrochloric/hydrofluoric acid medium, arsenic(V) being only slightly reduced under the conditions used. For its determination, arsenic(V) has to be prereduced with potassium iodide, and even then its reduction to arsenic(III) and then arsine is far from complete. It is possible to determine it in presence of arsenic(III) by a difference method, but this is recommended only if the As(V)/As(III) ratio is greater than 1. Total arsenic can be determined after oxidation of As(III) and evaporation of most of the hydrofluoric acid. The limit of determination is 5 g/l for arsenic(III) and 0.25 g/l for total arsenic; the relative standard deviation is about 10%.  相似文献   

14.
Water and ‘soft’ extractions (hydroxylammonium hydrochloride, ammonium oxalate and orthophosphoric acid) have been studied and applied to the determination of arsenic species (arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in three environmental solid reference materials (river sediment, agricultural soil, sewage sludge) certified for their total arsenic content. The analytical method used was ion exchange liquid chromatography coupled on‐line to atomic fluorescence spectroscopy through hydride generation. Very low detection limits for arsenic were obtained, ranging from 0.02 to 0.04 mg kg?1 for all species in all matrices studied. Orthophosphoric acid is the best extractant for sediment (mixed origin) and sludge samples (recent origin) but not for the old formation soil sample, from which arsenic is extracted well only by oxalate. Both inorganic forms (As(III) and As(V)) are significant in all samples, As(V) species being predominant. Moreover, organic forms are found in water extracts of all samples and are more important in the sludge sample. These organic forms are also present in the ‘soft’ extracts of sludge. Microwave‐assisted extraction appears to minimize the risk of a redox interconversion of inorganic arsenic forms. This study points out the necessity of combining direct and sequential extraction procedures to allow for initial arsenic speciation and to elucidate the different mineralogical phases–species associations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
建立了分析海藻类产品中2种无机砷价态的高效液相色谱-原子荧光光谱(HPLC-AFS)联用的分析方法. 样品经稀硝酸热浸提后离心,取上清液过C18小柱及0.22 μm滤膜,进样分析. 结果表明:2种无机砷在5.0~100.0 μg/L范围内呈良好的线性关系,相关系数r均大于0.999,As(Ⅲ)的最低定量限为0.01 mg/kg,As(Ⅴ)的最低定量限为0.02 mg/kg,As(Ⅲ)和As(Ⅴ)的样品加标回收率为86.2%~106.5%,相对标准偏差(RSD)为3.47%~6.14%. 方法可满足海藻类产品中2种价态无机砷的含量分析要求.  相似文献   

16.
A new speciation and preconcentration method based on dispersive liquid‐liquid microextraction has been developed for trace amounts of As(III) and As(V) in urine and water samples. At pH 4, As(III) is complexed with ammoniumpyrrolidine dithiocarbamate and extracted into 1‐Hexyl‐3‐methylimidazolium hexafluorophosphate, as an ionic liquid (IL) and As(III) is determined by electrothermal atomic absorption spectrometery (ETAAS). Arsenic(V) in the mixing solution containing As(III) and As(V) was reduced by using KI and ascorbic acid in HCl solution and then the procedure was applied to determination of total arsenic. Arsenic(V) was calculated as the difference between the total arsenic content and As(III) content. The effect of various parameters on the recovery of the arsenic ions has been studied. Under the optimum conditions, the enrichment factor 135 was obtained. The proposed method was successfully applied to the determination of trace amounts of As(III) and As(V) in water and biological samples.  相似文献   

17.
A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12 ng mL−1 with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5 ng mL−1 As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided.  相似文献   

18.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

19.
Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 μg L−1 with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 μg mL−1 was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.  相似文献   

20.
A simple, fast, reproducible (2.5% RSD at 3.0 μg/L), and sensitive method is described for quantifying As(III) (0.3 μg/L detection limit, 0.5–440 μg/L dynamic range). Anodic stripping voltammetry (ASV) is performed after accumulating arsenic at a mercury film electrode at ?0.350 V vs. Ag/AgCl (saturated KCl) for 20 s in 0.2 M HCl containing 8 μM ammonium 2‐amino‐1‐cyclopentene‐1‐dithiocarboxylate (AACD), without oxygen removal. This is the first report of using AACD in ASV and in electrochemical quantification of As(III). Total arsenic is determined after sodium‐sulfite‐reduction of As(V) to As(III). Interferences are minimal. Method validation involved water and metal alloy samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号