共查询到20条相似文献,搜索用时 15 毫秒
1.
罗金炎 《数学的实践与认识》2014,(23)
设计了一种改进的二进制粒子群优化算法来求解车辆路径问题,算法基于粒子群算法的寻优模式充分考虑粒子之间的导向作用,改进二进制粒子群算法的位取值方式,减小了在进化过程中停滞于局部最优解的概率,并通过构造辅助函数处理优化问题的约束条件,基于分层次实现多个目标的思路来寻优,提高了算法的搜索效率和计算速度.实验测试结果验证了该算法对求解车辆路径问题的适用性和有效性. 相似文献
2.
3.
Path relinking for the vehicle routing problem 总被引:3,自引:0,他引:3
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search
method that explores the solution space more thoroughly than other local search based methods by overcoming local optima.
Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect
previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu
search on the vehicle routing problem. 相似文献
4.
研究了不确定同时取送货车辆路径问题(VRPSPD),考虑运行环境的不确定性,顾客时间窗口要求和对顾客同时进行取货和送货服务的情况,以运作成本最低和顾客满意度最高为决策目标,构建不确定VRPSPD数学模型。模型中,引入模糊随机理论来描述决策环境中的双重不确定性,假定顾客需求量(送货量)和取货量是模糊随机变量。随后,提出基于模糊随机算子的改进粒子群算法对模型进行求解。为了适应模型特点和提高算法效率,设计合理的编码和解码过程,制定多个适应度函数方案处理多目标问题,并应用更加科学的更新策略。最后在应用案例中,通过参数测试获取合理的算法参数取值,采用计算结果分析和求解算法测评验证模型和算法的有效性。 相似文献
5.
本文针对求解旅行商问题的标准粒子群算法所存在的早熟和低效的问题,提出一种基于Greedy Heuristic的初始解与粒子群相结合的混合粒子群算法(SKHPSO)。该算法通过本文给出的类Kruskal算法作为Greedy Heuristic的具体实现手段,产生一个较优的初始可行解,作为粒子群中的一员,然后再用改进的混合粒子群算法进行启发式搜索。SKHPSO的局部搜索借鉴了Lin-Kernighan邻域搜索,而全局搜索结合了遗传算法中的交叉及置换操作。应用该算法对TSPLIB中的典型算例进行了算法测试分析,结果表明:SKHPSO可明显提高求解的质量和效率。 相似文献
6.
求解旅行商问题的一种改进粒子群算法 总被引:1,自引:0,他引:1
本文研究了求解旅行商问题的粒子群算法。针对标准粒子群算法在求解旅行商问题过程中容易出现早熟和停滞现象的缺点,提出了一种改进的粒子群算法。首先,在初始种群的选取过程中,利用改进的贪婪策略直接获得具有较高性能的初始种群以提高算法的搜索效率。其次,通过引入次优吸引子,使粒子在搜索过程中可以更加充分地利用群体的信息来提高自身的性能,有效抑制收敛过程中的停滞现象,提高算法的搜索能力。最后为了验证所提出的方法的有效性和可行性,对TSPLIB标准库中的多个实例进行了测试,并给出了数值结果。 相似文献
7.
8.
Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking 总被引:1,自引:0,他引:1
Christian Prins Caroline Prodhon Roberto Wolfler Calvo 《4OR: A Quarterly Journal of Operations Research》2006,4(3):221-238
As shown in recent researches, the costs in distribution systems may be excessive if routes are ignored when locating depots. The location routing problem (LRP) overcomes this drawback by simultaneously tackling location and routing decisions. This paper presents a new metaheuristic to solve the LRP with capacitated routes and depots. A first phase executes a GRASP, based on an extended and randomized version of Clarke and Wright algorithm. This phase is implemented with a learning process on the choice of depots. In a second phase, new solutions are generated by a post-optimization using a path relinking. The method is evaluated on sets of randomly generated instances, and compared to other heuristics and a lower bound. Solutions are obtained in a reasonable amount of time for such a strategic problem. Furthermore, the algorithm is competitive with a metaheuristic published for the case of uncapacitated depots. 相似文献
9.
本文研究考虑交易成本的投资组合模型,分别以风险价值(VAR)和夏普比率(SR)作为投资组合的风险评价指标和效益评价指标。为有效求解此模型,本文在引力搜索和粒子群算法的基础上提出了一种混合优化算法(IN-GSA-PSO),将粒子群算法的群体最佳位置和个体最佳位置与引力搜索算法的加速度算子有机结合,使混合优化算法充分发挥单一算法的开采能力和探索能力。通过对算法相关参数的合理设置,算法能够达到全局搜索和局部搜索的平衡,快速收敛到模型的最优解。本文选取上证50股2014年下半年126个交易日的数据,运用Matlab软件进行仿真实验,实验结果显示,考虑交易成本的投资组合模型可使投资者得到更高的收益率。研究同时表明,基于PSO和GSA的混合算法在求解投资组合模型时比单一算法具有更好的性能,能够得到满意的优化结果。 相似文献
10.
本文依照更具有现实意义的“加工厂—配送中心—用户”的模式建立物流配送中心连续型选址模型,并针对较大规模的选址问题提出求解算法。该算法是将具有较强鲁棒性的自适应粒子算法和改进的ALA(Alert Location-Allocation)方法结合而得,该算法中种群规模自适应变化,对经典粒子移动方程进行改进,消除了学习因子,惯性因子随粒子适应值自适应变化,改进的ALA方法提高了算法计算效率。数值试验表明,本文所建模型具有一定的实践优越性,所提出的算法能有效避免陷入局部最优,寻优能力和鲁棒性均较强。 相似文献
11.
提出了一种带服务优先级车辆路径问题的模型(Vehicle Routing Problem with Precedence Constraints,VRPPC),和一种扫描—禁忌搜索算法(sweep-Taboo Search Algorithm,S-TSA).然后,运用S-TSA对郑煤物资供销有限公司的带有服务优先级的危险物资配送进行优化求解,并与扫描遗传算法(sweep-Genetic Algorithm,SGA),禁忌搜索算法(Taboo Search Algorithm,TSA),人工鱼群算法(Artificial Fish Algorithm,AFA)进行比较研究,研究结果显示:扫描禁忌搜索算法能在满足服务优先级的前提下,使配送费用最少. 相似文献
12.
本文在经典的带时间窗的车辆路径问题(VRPTW)的基础上,考虑不同时间段车辆行驶速度不同的情况,研究速度时变的带时间窗车辆路径问题(TDVRPTW),使问题更具实际意义。本文用分段函数表示不同时间段下的车辆行驶速度,并解决了速度时变条件下行驶时间计算的问题。针对模拟退火算法(SA)在求解VRPTW问题时易陷入局部最优解,变邻域搜索算法(VNS)在求解VRPTW问题时收敛速度慢的问题,本文将模拟退火算法以一定概率接受非最优解的思想和变邻域搜索算法系统地改变当前解的邻域结构以拓展搜索范围的思想结合起来,提出了一种改进的算法——变邻域模拟退火算法(SAVN),使算法在退火过程中一陷入局部最优解就改变邻域结构,更换搜索范围,以此提升算法跳出局部最优解的能力,加快收敛速度。通过在仿真实验中将SAVN算法的求解结果与VNS算法、SA算法进行对比,验证了SAVN算法确实能显著提升算法跳出局部最优解的能力。 相似文献
13.
为提高带时间窗车辆路径问题的求解精度和求解效率,设计了一种混合Memetic算法。采用基于时间窗升序排列的混合插入法构造初始种群,提高解质量的同时兼顾多样性,扩大搜索空间;任意选择组成父代种群,以维持搜索空间;运用简化的变邻域搜索进行局部开发,引入邻域半径减少策略提高开发效率,约束放松机制开放局部空间;以弧为对象,增加种群向当前最优解和全局最优解的后学习过程。实验结果表明,所提出的算法具有较好的寻优精度和稳定性,能搜索到更好的路径长度结果,更新了现有研究在最短路径长度的目标函数上的下限。 相似文献
14.
Using Constraint-Based Operators to Solve the Vehicle Routing Problem with Time Windows 总被引:3,自引:0,他引:3
This paper presents operators searching large neighborhoods in order to solve the vehicle routing problem. They make use of the pruning and propagation techniques of constraint programming which allow an efficient search of such neighborhoods. The advantages of using a large neighborhood are not only the increased probability of finding a better solution at each iteration but also the reduction of the need to invoke specially-designed methods to avoid local minima. These operators are combined in a variable neighborhood descent in order to take advantage of the different neighborhood structures they generate. 相似文献
15.
Particle swarm optimization (PSO) has emerged as an acclaimed approach for solving complex optimization problems. The nature metaphors of flocking birds or schooling fish that originally motivated PSO have made the algorithm easy to describe but have also occluded the view of valuable strategies based on other foundations. From a complementary perspective, scatter search (SS) and path relinking (PR) provide an optimization framework based on the assumption that useful information about the global solution is typically contained in solutions that lie on paths from good solutions to other good solutions. Shared and contrasting principles underlying the PSO and the SS/PR methods provide a fertile basis for combining them. Drawing especially on the adaptive memory and responsive strategy elements of SS and PR, we create a combination to produce a Cyber Swarm Algorithm that proves more effective than the Standard PSO 2007 recently established as a leading form of PSO. Applied to the challenge of finding global minima for continuous nonlinear functions, the Cyber Swarm Algorithm not only is able to obtain better solutions to a well known set of benchmark functions, but also proves more robust under a wide range of experimental conditions. 相似文献
16.
上证指数预测是一个非常复杂的非线性问题,为了提高对上证指数预测的准确性,本文采用基于混沌粒子群(CPSO)算法对BP神经网络算法改进的方法来进行预测.BP神经网络算法目前已经应用到预测、聚类、分类等许多领域,取得了不少的成果.但自身也有明显的缺点,比如易陷入局部极小值、收敛速度慢等.用混沌粒子群算法改进BP神经网络算法的基本思想是用混沌粒子群算法优化BP神经网络算法的权值和阈值,在粒子群算法中加入混沌元素,提高粒子群算法的全局搜索能力.对上证指数预测的结果表明改进后的预测方法,具有更好的准确性. 相似文献
17.
一种部分约束满足车辆路线问题及其求解算法 总被引:1,自引:0,他引:1
描述了一类过度约束车辆路线问题,其中可用车辆数较少而时间窗口等其它约束又不允许放松,因而导致不存在满足所有约束的可行解。此时问题求解可以转化为一类部分约束满足问题来处理,相应的优化目标是最小化未访问顾客的损失和。本给出了求解这类特殊问题的一种禁忌搜索算法设计,并通过规模不同的几个算例与其它常用方法进行了比较。最后分析了模型和算法的实用意义。 相似文献
18.
针对人工鱼群算法由于固定视野导致寻优效率低、易陷入局部极值的弊端,引入视野递减反馈策略,提出一种改进人工鱼群算法.视野随着迭代次数和寻优反馈信息适时变化,旨在平衡算法的全局搜索和局部搜索能力.实验测试表明算法在保证收敛速度的基础上提高了计算精度,并且增加了算法陷入局部极值时快速跳出的可能性,最后将改进算法应用于求解国家AAAAA级风景区最短遍历路径问题. 相似文献
19.
车辆与无人机联合配送模式在产业界受到青睐,该模式有效地降低了配送成本,但却有极大的调度难度,问题的求解也非常复杂。本文对问题进行明确定义并建立模型,根据问题特性设计了一个自适应大规模邻域搜索(Adaptive Large Neighborhood Search, ALNS)算法,进行了大量的实验的对比和分析。研究结果表明,ALNS算法相比Gurobi在运行时间上有明显优势,结果相同甚至更优;车辆与无人机联合配送模式也较仅卡车配送模式节约了成本。 相似文献
20.
为改善粒子群优化算法在解决复杂优化问题时收敛质量不高的不足,提出了一种改进的粒子群优化算法,即混合变异粒子群优化算法(HMPSO).HMPSO算法采用了带有随机因子的惯性权重取值更新策略,降低了标准粒子群优化算法中由于粒子飞行速度过大而错过最优解的概率,从而加速了算法的收敛速度.此外,通过混合变异进化环节的引入,缓解了... 相似文献