首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
在室温下, 以2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基(HTEMPO)为调控介质, 1-羟基-环己基-苯基甲酮(Irgacure 184)为引发剂, 采用光化学方法研究了甲基丙烯酸甲酯(MMA)/十二烷基硫酸钠(SDS)/十六醇(CA)/水细乳液体系的光聚合反应控制动力学. 结果表明, 该细乳液体系非常稳定, 在整个聚合过程中即没有絮凝物产生, 也没有沉淀析出, 获得了良好的ln([M0]/[M])与时间、数均分子量与转化率之间的线性动力学关系, 并且在整个聚合反应过程中MMA均聚物的分子量分布比较窄, 其多分散性指数较低(PDI=1.27~1.36), 具有明显的活性聚合特征.  相似文献   

2.
The novel photo-living radical polymerization of methyl methacrylate (MMA) was determined using 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) (AMDV) and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The polymerization provided a comparatively narrow molecular weight distribution in the range of 1.4–1.7. The resulting PMMA contained no BAI fragments in its structure and had the 1-cyano-1,3-dimethyl-3-methoxybutyl radical and MTEMPO at the 1:1 molar ratio. The experimental molecular weight was in close agreement with the theoretical one when the initiator efficiency was taken into consideration. The plots of ln([MMA]0/[MMA]) vs. time and the molecular weight of PMMA vs. the conversion and vs. the reciprocal of the initial concentration of AMDV showed linear correlations, indicating that the polymerization proceeded in accordance with a living mechanism. It was found that the polymerization had a photo-switching ability, because the polymerization was interrupted by turning off the irradiation, and then restarted by the irradiation again.  相似文献   

3.
The bulk polymerization of methyl methacrylate (MMA) initiated with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) was studied. This polymerization showed some “living” characteristics; that is, both the yield and the molecular weight of the resulting polymers increased with reaction time, and the resultant polymer can be extended by adding MMA. The molecular weight distribution of PMMA obtained at high conversion is fairly narrow (Mw/Mn = 1.24≈1.34). It was confirmed that DCDPS can serve as a thermal iniferter for MMA polymerization by a “living” radical mechanism. Furthermore, the PMMA obtained can act as a macroinitiator for radical polymerization of styrene (St) to give a block copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4610–4615, 1999  相似文献   

4.
A tetrahydrofuran (THF) solution of the living random copolymer of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) was prepared by the living anionic copolymerization of the two monomers, using 1,1‐diphenylhexyllithium (DPHLi) as initiator, in the presence of LiCl ([LiCl]/[DPHLi]0 = 3), at −50°C. The copolymer thus obtained has a controlled composition and molecular weight and a narrow molecular weight distribution. By introduction of an anionic living polystyrene (poly(St)) or anionic living polyisoprene (poly(Is)) solution into the above system at −30°C, a coupling reaction took place and a graft copolymer with a polar backbone and nonpolar side chains was produced. The solvent used in the preparation of the living poly(St) or poly(Is) affects the coupling reaction. When benzene was the solvent, a graft copolymer of high purity, controlled graft number and molecular weight, and narrow molecular weight distribution (Mw/Mn = 1.11–1.21) was obtained. In the coupling reaction, the living poly(St) reacted only with the epoxy groups and not with the carbonyls of the backbone polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 105–112, 1999  相似文献   

5.
The organo‐rare‐earth‐metal‐initiated living polymerization of methyl methacrylate (MMA) was first discovered in 1992 with (C5Me5)2LnR (where R is H or Me and Ln is Sm, Yb, Y, or La) as an initiator. These polymerizations provided highly syndiotactic (>96%) poly(methyl methacrylate) (PMMA) with a high number‐average molecular weight (Mn > 1000 × 103) and a very narrow molecular weight distribution [weight‐average molecular weight/number‐average molecular weight (Mw/Mn) < 1.04] quantitatively in a short period. Bridged rare‐earth‐metallocene derivatives were used to perform the block copolymerization of ethylene or 1‐hexene with MMA, methyl acrylate, cyclic carbonate, or ?‐caprolactone in a voluntary ratio. Highly isotactic (97%), monodisperse, high molecular weight (Mn > 500 × 103, Mw/Mn < 1.1) PMMA was first obtained in 1998 with [(Me3Si)3C]2Yb. Stereocomplexes prepared by the mixing of the resulting syndiotactic and isotactic PMMA revealed improved physical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1955–1959, 2001  相似文献   

6.
In this study, photoirradiated Fe-mediated AGET (activators generated by electron transfer) atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was investigated at ambient temperature in N,N-dimethylformamide (DMF) using carbon tetrachloride as initiator, FeCl3·6H2O/bipyridine (Bpy) as catalyst complex, and alcohol as reducing agent. Linear semi-logarithmic plot of conversion vs. time was obtained from the kinetic experiments, and the number-average molecular weight increased linearly with monomer conversion and corresponded to the theoretic values with molecular weight distributions (Mw/Mn) as low as 1.25, which agreed with the character of controlled/living polymerization. The kinds of alcohol played an important role in photoirradiated Fe-mediated AGET ATRP of MMA. The living characteristics were demonstrated through chain extension experiment. The obtained polymer was characterized by proton nuclear magnetic resonance (NMR) and gel permeation chromatography.  相似文献   

7.
A fast living radical polymerization of methyl methacrylate (MMA) proceeded with the (MMA)2? Cl/Ru(Ind)Cl(PPh3)2 initiating system in the presence of n‐Bu2NH as an additive [where (MMA)2? Cl is dimethyl 2‐chloro‐2,4,4‐trimethyl glutarate]. The polymerization reached 94% conversion in 5 h to give polymers with controlled number‐average molecular weights (Mn's) in direct proportion to the monomer conversion and narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ≤ 1.2]. A poly(methyl methacrylate) with a high molecular weight (Mn ~ 105) and narrow MWD (Mw/Mn ≤ 1.2) was obtained with the system within 10 h. A similarly fast but slightly slower living radical polymerization was possible with n‐Bu3N, whereas n‐BuNH2 resulted in a very fast (93% conversion in 2.5 h) and uncontrolled polymerization. These added amines increased the catalytic activity through some interaction such as coordination to the ruthenium center. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 617–623, 2002; DOI 10.1002/pola.10148  相似文献   

8.
In the presence of β‐cyclodextrin (β‐CD), reversible addition–fragmentation chain transfer (RAFT) polymerization has been successfully applied to control the molecular weight and polydispersity [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] in the miniemulsion polymerization of butyl methacrylate, with 2‐cyanoprop‐2‐yl dithiobenzoate as a chain‐transfer agent (or RAFT agent) and 2,2′‐azoisobutyronitrile (AIBN) as an initiator. β‐CD acted as both a stabilizer and a solubilizer, assisting the transportation of the water‐insoluble, low‐molecular‐weight RAFT agent into the polymerization loca (i.e., droplets or latex particles) and thereby ensuring that the RAFT agent was homogeneous in the polymerization loca. The polymers produced in the system of β‐CD exhibited narrower polydispersity (1.2 < Mw/Mn < 1.3) than those without β‐CD. Moreover, the number‐average molecular weight in the former case could be controlled by a definite amount of the RAFT agent. Significantly, β‐CD was proved to have a favorable effect on the stability of polymer latex, and no coagulum was observed. The effects of the concentrations of the RAFT agent and AIBN on the conversion, the molecular weight and its distribution, and the particle size of latices were investigated in detail. Furthermore, the influences of the variations of the surfactant (sodium dodecyl sulfate) and costabilizer (hexadecane) on the RAFT/miniemulsion polymerization were also studied. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2931–2940, 2005  相似文献   

9.
An investigation of the copolymerization of allyl glycidyl ether (AGE) with methyl acrylate (MA) was performed in the presence of benzyl imidazole-1-carbodithioate (BICDT) on the thermal initiation condition. Results showed that the process has good characteristics of living free radical polymerization, i.e. the molecular weight of the obtained polymer increases linearly with monomer conversion, molecular weight distribution is very narrow, and a linear relationship between ln([M]0/[M]) and polymerization time is found. The copolymer structure containing epoxy groups was demonstrated from the 1H nuclear magnetic resonance (1H NMR) spectrum. It was found that the content of AGE in the copolymer increases with the increase in monomer conversion and molar faction of the AGE in the monomer feed. However, the polymerization could slow down when the fraction of AGE increases in the monomer feed. Taking advantage of living polymerization character, functional block copolymers PSt-b-P (MA-co-AGE) were prepared in the presence of PSt RAFT agent. __________ Translated from Journal of Anhui University of Science and Technology, 2006, 26(3): 56–61 [译自: 安徽理工大学学报]  相似文献   

10.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

11.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The photo-living radical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate ( t BuS) as the photo-acid generator. The livingness of the polymerization was confirmed on the basis of linear increases in the ln([MMA]0/[MMA]t) vs. time and in the molecular weight vs. the conversion. The molecular weight distributions of the resulting polymers were around 1.45. The polymerization rate was dependent both on the t BuS/MTEMPO and MTEMPO/r-AMDV molar ratios. Furthermore, it was found that the polymerization had a photo-latency because the polymerization was retarded by the interruption of the irradiation; however, it was accelerated again by further irradiation without deactivation of the growing polymer chain ends.  相似文献   

13.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

14.
Four new structures (o,o-diethyl dithiobisthioformate, isopropylxanthic disulfide, tetramethyldicarbonotrithioic diamide, and phenylacetyl disulfide) are proposed as photoiniferters for controlled photopolymerization reactions. Their photochemical properties, efficiency in controlling the photopolymerization of methyl methacrylate (MMA), and ability to photocrosslink a difunctional acrylate monomer [1,6-hexane diol diacrylate (HDDA)] are investigated. The rates of polymerization of MMA and HDDA and the number-average molecular weights (Mn's) and polydispersity indices (PDIs) of poly(methyl methacrylate) have been determined. The transient absorption spectra and interaction rate constants of the radicals have been measured. Both the (alkyloxythiocarbonyl)thiyl and (benzylcarbonyl)thiyl radicals are efficient in controlling a photopolymerization process. For a 40% monomer conversion obtained in a few minutes, the Mn values range from 6000 to 14,000, and the PDIs can reach 1.6–2.2. A fivefold reduction of the light intensity increases Mn by 25% and reduces PDI by 5%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2436–2442, 2007  相似文献   

15.
MCl2 (M = Ni, Co, Sn, or Mn) and PPh3 together acted as a catalyst for the radical polymerization of methyl methacrylate (MMA) in the presence of ethyl 2‐bromoisobutyrate as an initiator. The four systems all led to conventional radical polymerizations, which yielded polymers with a weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ratio greater than 2.0 and became well controlled when a certain amount of FeCl3·6H2O was added. The polymerizations of MMA catalyzed by these four FeCl3‐modified catalyst systems provided well‐defined polymers with low polydispersities (Mw/Mn < 1.28). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2625–2631, 2005  相似文献   

16.
付志峰 《高分子科学》2011,29(5):560-568
The polymerization of 1-octene initiated by methylalumoxane(MAO)-activated Ni(Ⅱ)-based-α-diimine complexes[(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 was investigated.Using this catalyst,poly(1-octene)s with molecular weight between 100×103 and 400×103 and polydispersity(Mw/Mn) between 1.3 and 1.5 were synthesized successfully by varying reaction time at room temperature.The poly(1-octene)s were amorphous polymers and could be well soluble in tetrahydrofuran(THF).After fractional precipitation,poly(1-octene)s with narrow molecular weight distributions(Mw/Mn≤1.12) were obtained.Their weight-average molecular weights were measured by gel permeation chromatography(GPC) in conjunction with online model BI-MwA multiangle laser light scattering(MALLS),and their intrinsic viscosities were measured by Maron’s single-point method.The k and a values in Mark-Houwink equation[η]= KMαin THF at 40℃were 0.089 mL/g and 0.61 respectively.  相似文献   

17.
A novel ionic polymerization of methyl methacrylate (MMA) with a series of enamines (1) in the presence of methylaluminum bis(2,6-di-tert-butylphenoxide) (2) was examined. Both nucleophile (1) and electrophile (2) are indispensable for the present polymerization, in which (1) acts as initiator and (2) as activator. MMA polymerization proceeded smoothly in toluene at or below room temperature (r.t.) in the presence of 1 and 2 (1 ∼ 4 mol %, respectively), went to completion within 1 h, and afforded syndiotactic-rich PMMA with molecular weight distribution (Mw/Mn) in the 1.1 ∼ 1.4 range. The number-average molecular weight (Mn) of the polymer was significantly higher than that calculated from the feed ratio of 1 to the monomer, indicating low initiating efficiency. Kinetic studies coupled with isolation of an intermediate species proved that the real monomeric species involved in both initiation and propagation was a complex of MMA with 2. The effects of the concentrations of 1, 2, and MMA as well as the temperature of polymerization were also examined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3671–3679, 1999  相似文献   

18.
RuCl2(PPh3)3 led to living radical copolymerization of N,N‐dimethylacrylamide (DMAA) and methyl methacrylate (MMA) in conjunction with a halide‐initiator (R‐X; CHCl2COPh, CCl3Br) and Al(Oi‐Pr)3 in toluene at 80°C. Both the monomers were polymerized at almost the same rate into random copolymers, where the number‐average molecular weights (Mn) increased in direct proportion to weight of the obtained polymers, and the molecular weight distributions (MWDs) were narrow throughout the reactions (Mw/Mn = 1.2‐1.6). MMA was consumed faster in the copolymerization than in the homopolymerization, which was due to the interaction of DMAA with the ruthenium complex. The Ru(II)‐based initiating system was also effective in block copolymerization of DMAA and MMA.  相似文献   

19.
Organolanthanide(III) complexes such as |(C5Me55)2SmH|2 and (C5Me5)2SmMe(THF) were found to initiate the living polymerizations of methyl methacrylate (MMA) to give high molecular weight polymers (M n > 500 × 103) with extremely low polydispersity (M w/Mn = 1.04). The syndiotacticity increased up to 95.2% by lowering the temperature to −95°C. The molecular structure of the 1:2 adduct of (C5Me5)2SmH with MMA determined by X-ray method indicates that this intermediate assumes the 8 membered ring conformation where the Sm atom is bound to MMA in an enolate form and the ester of penultimate MMA is coordinated to the metal. Based upon these results, an anionic coordination mechanism has been proposed for the present reaction. Organolanthanide(II) complexes also exhibit high activity and proceed the living polymerizations. Organolanthanide(III) complexes also initiate the living polymerizations of lactones such as ϵ-caprolactone and δ-valerolactone. The stoichiometric reactions indicate that real active species assumes the alkoxylanthanide(III) form.  相似文献   

20.
The hydrophobic formation cationic starch (PSOAMDA) was prepared from starch (St), octadecyl acrylate (OA), acrylamide (AM) and dimethyl diallyl ammonium chloride (DMDAAC) by means of inverse suspension polymerization with redox initiator. Water with algae from Dianchi Lake was tested with PSOAMDA. Results show that when the molar ratio of St: AM: DMDAAC: OA is 4:8:1.5:0.6 and the reaction temperature is 40°C with a reaction time of 3 h, the monomer conversion yield, graft percentage and cationic degree is 92.4%, 63.8% and 7.3%, respectively, and M η = 3.26×106 g/vmol. It had been found from the flocculation of disposed water with algae from Dianchi Lake that the transparency and COD elimination reach to 93.5% and 70.3%, respectively, with 15 mg/L PSOAMDA and at pH 6, vs. 91.3% and 69.2% obtained with the commercial cationic polyacrylamide (PAM-C). When PSOAMDA dosage is 10–25 mg/L and the pH of aqueous solution is 6–10, the flocculation performance is well capable of dealing with the water with algae from Dianchi Lake. __________ Translated from Journal of Yunnan University (Natural Sciences Edition), 2007, 29(2): 177–182 [译自: 云南大学学报(自然科学版)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号