首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On the Efficiency of Coxeter Groups   总被引:1,自引:0,他引:1  
If G is a finitely presented group and K is any (G,2)-complex(that is, a finite 2-complex with fundamental group G), thenit is well known that X(K) (G), where (G) = 1–rk H1G+ dH2G. We define (G) to be min{(K): K a (G, 2)-complex}, andwe say that G is efficient if (G)=(G). In this paper we givesufficient conditions for a Coxeter group to be efficient (Theorem4.2). We also give examples of inefficient Coxeter groups (Theorem5.1). In fact, we give an infinite family Gn(n = 2, 3, 4, ...)of Coxeter groups such that (Gn)–(Gn) as n . 1991 MathematicsSubject Classification 20F05, 20F55.  相似文献   

3.
We prove that certain hyperbolic Coxeter groups are separable on their geometrically finite subgroups.  相似文献   

4.
5.
For a Coxeter group W, X a subset of W and a positive root, we define the negative orbit of under X to be {w · | w X} , where is the set of negative roots. Here we investigate the sizes of such sets as varies in the case when W is a finite Coxeter group and X is a conjugacy class of W.  相似文献   

6.
Koji Nuida 《代数通讯》2013,41(7):2559-2595
In this article, we prove that any irreducible Coxeter group of infinite order, which is possibly of infinite rank, is directly indecomposable as an abstract group. The key ingredient of the proof is that we can determine, for an irreducible Coxeter group W, the centralizers in W of the normal subgroups of W that are generated by involu-tions. As a consequence, the problem of deciding whether two general Coxeter groups are isomorphic is reduced to the case of irreducible ones. We also describe the automorphism group of a general Coxeter group in terms of those of its irreducible components.  相似文献   

7.
Let W be a finite Coxeter group. We classify the reflection subgroups of W up to conjugacy and give necessary and sufficient conditions for the map that assigns to a reflection subgroup R of W the conjugacy class of its Coxeter elements to be injective, up to conjugacy.  相似文献   

8.
Let G be a group and let φ(G) be the least integer k such that G(k) = G(k+1). If no such k exists, then φ(G) = ∞ and we write G ∈ 𝒰. We are interested in the questions which Coxeter groups are in 𝒰 and how large can finite φ(G) be for Coxeter groups. The second author answered these questions for 3-generator and 4-generator Coxeter groups. This article begins the study for the 5-generator case.  相似文献   

9.
We characterize certain properties of the derived series of Coxeter groups by properties of the corresponding Coxeter graphs. In particular, we give necessary and sufficient conditions for a Coxeter group to be quasiperfect.  相似文献   

10.
11.
Annals of Combinatorics - For a given w in a Coxeter group W, the elements u smaller than w in Bruhat order can be seen as the end alcoves of stammering galleries of type w in the Coxeter complex...  相似文献   

12.
We continue the study of the maximally clustered elements for simply laced Coxeter groups which were recently introduced by Losonczy. Such elements include as a special case the freely braided elements introduced by Losonczy and the author, which in turn constitute a superset of the i ji-avoiding elements of Fan. Our main result is to classify the MC-finite Coxeter groups, namely, those Coxeter groups having finitely many maximally clustered elements. Remarkably, any simply laced Coxeter group having finitely many i ji-avoiding elements also turns out to be MC-finite.  相似文献   

13.
Let W be a Coxeter group. We define an element w ε W to be fully commutative if any reduced expression for w can be obtained from any other by means of braid relations that only involve commuting generators. We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many fully commutative elements, and classify the parabolic quotients whose members are all fully commutative. As applications of the latter, we classify all parabolic quotients with the property that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weak ordering and Bruhat ordering coincide. Partially supported by NSF Grants DMS-9057192 and DMS-9401575.  相似文献   

14.
For a finite group G, let Cent(G) denote the set of centralizers of single elements of G and #Cent(G) = |Cent(G)|. G is called an n-centralizer group if #Cent(G) = n, and a primitive n-centralizer group if #Cent(G) = #Cent(G/Z(G)) = n. In this paper, we compute #Cent(G) for some finite groups G and prove that, for any positive integer n 2, 3, there exists a finite group G with #Cent(G) = n, which is a question raised by Belcastro and Sherman [2]. We investigate the structure of finite groups G with #Cent(G) = 6 and prove that, if G is a primitive 6-centralizer group, then G/Z(G) A4, the alternating group on four letters. Also, we prove that, if G/Z(G) A4, then #Cent(G) = 6 or 8, and construct a group G with G/Z(G) A4 and #Cent(G) = 8.This research was in part supported by a grant from IPM.2000 Mathematics Subject Classification: 20D99, 20E07  相似文献   

15.
Let (W, S be a finite Coxeter system, and let JS. Any wW hasa unique factorization w = wJ wJ, where wj belongs to the parabolicsubgroup WJ generated by J, and wJ is of minimal length in thecoset wWJ. It is shown here that wI = wJ if and only if wI =wJ, for all I, J S. Furthermore, a similar symmetry propertyin arbitrary (WI, WJ-double cosets is conjectured, which linksthis result to the Solomon descent algebra of W. 2000 MathematicsSubject Classification 20F55.  相似文献   

16.
It is natural to define a Coxeter transformation in quantum groups by the product of Lusztig's symmetries in some order. In this note, we show that the Ringel–Hall algebra approach enables us to determine the behavior of its action in case of finite type.  相似文献   

17.
18.
A Coxeter group is rigid if it cannot be defined by two nonisomorphic diagrams. There have been a number of recent results showing that various classes of Coxeter groups are rigid, and a particularly interesting example of a nonrigid Coxeter group has been given by Bernhard Mühlherr. We show that this example belongs to a general operation of diagram twisting. We show that the Coxeter groups defined by twisted diagrams are isomorphic, and, moreover, that the Artin groups they define are also isomorphic, thus answering a question posed by Charney. Finally, we show a number of Coxeter groups are reflection rigid once twisting is taken into account.  相似文献   

19.
Mahmut Kuzucuoğlu 《代数通讯》2013,41(10):3253-3262
The present article deals with locally finite groups G having an involution φ such that C G (φ) is an SF-group. It is shown that G possesses a normal subgroup B which is a central product of finitely many groups isomorphic to PSL(2, K i ) or SL(2, K i ) for some infinite locally finite fields K i of odd characteristic, such that [G, φ]′/B and G/[G, φ] are both SF-groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号