首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Sun J  Cui S  He Z 《Journal of chromatography. A》2006,1132(1-2):174-182
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.  相似文献   

2.
We recently proposed a new hydrogen-accepting parameter, S(HA), for monosubstituted (di)azines on the basis of the heat of formation calculated by the conductor-like screening model (COSMO) method. In this work, S(HA) values for monosubstituted thiophenes and furans were calculated and the results were applied to the analysis of relationships between log P (P: 1-octanol/water partition coefficient) and log k (k: retention factor obtained by reversed phase HPLC). The S(HA) parameter was found to work effectively as a hydrogen-bonding parameter in a range of heteroaromatic compounds.  相似文献   

3.
The aims of this study were to investigate whether three commercially available immobilized artificial membrane (IAM) HPLC columns yield collinear data for neutral compounds, and whether IAM scales are distinct from the log Poct (partition coefficient in the octanol/H2O system) scale. With these objectives, the retention mechanisms on the IAM HPLC columns were analysed by linear solvation free‐energy relationships (LSERs). A set of 68 neutral model compounds with known solvatochromic parameters and log Poct values was investigated, allowing a regular and broad exploration of property space. The resulting solvatochromic equations clearly indicate that the three IAM stationary phases retain small neutral solutes by a balance of intermolecular forces closely resembling those underlying partitioning in octanol/H2O and retention on a reversed‐phase LC‐ABZ HPLC column. For all systems, the solute's size and hydrogen‐bond‐acceptor basicity are the two predominant factors, whereas dipolarity/polarisability and hydrogen‐bond‐donor acidity play only minor roles.  相似文献   

4.
5.
The use of log k derived from reversed phase (RP)-HPLC retention times provides a convenient method for estimating log P(oct) values (P(oct): 1-octanol/water partition coefficient). In order to establish optimal HPLC conditions, the difference between chromatographic (C18 modified column and aqueous methanol eluents) and bulk solvent systems was examined by use of a batch-like equilibration with octane/aqueous methanol. Comparison of values for log P(O/M-W) (log P for the Octane/MeOH-Water partitioning system) and log k measured for monosubstituted pyrazines at different methanol concentrations, showed closest correlation (r, 0.94) with 50% aqueous methanol; and importantly, under these conditions, log k shows even better correlation (r, 0.99) with log P(oct). Effects of residual silanols on HPLC retention with C18 stationary phases were examined. The results show that, in the presence of a small quantity of accessible silanols, the use of 50% aqueous methanol (M50) as eluent yields values of log k directly proportional to log P(oct) in accord with our earlier proposal that use of log k(M50) provides a convenient means for rapid estimation and prediction of log P(oct).  相似文献   

6.
7.
Coumarins, furocoumarins and pyranocoumarins (29 compounds) were investigated in silanized silica (HPTLC RP-2 and RP-18 and HPLC RP-18)-water organic modifier (methanol, acetonitrile, dioxane, tetrahydrofuran and methanol containing acetic acid) systems. The physico-chemical properties of these compounds were characterized by their hydrophobicity parameters (RMw), determined by extrapolation of the linear relationships for retention data in binary solvent systems [RM = f(phi)] to pure water. The effect of individual substituents on retention was quantified by using the group contribution parameter delta RM or delta log k'.  相似文献   

8.
The objectives of this study were to establish guidelines for the proper measurement of capacity factors (log k(IAMw) on immobilized artificial membrane (IAM) stationary phases. In this context, some aspects related to the extrapolation of log(kIAMw) values, the stability and properties of IAM.PC.DD2 stationary phases and the column-to-column variability are discussed. No significant difference was observed when using either acetonitrile or methanol for the linear extrapolation of log k(IAM) values. However, methanol seems more appropriate when working with ionized compounds. Plotting isocratic capacity factors against the percentage (v/v) of co-solvent instead of the mole fraction leads to more reliable log k(AMW) values. Furthermore, our results with a YMC ODS-AQ and an IAM.PC.DD2 HPLC column indicate that only small differences arise between extrapolated capacity factors when using the (w(w))pH or the (s(w))pH operational scale and correcting or not the ionic strength for dilution caused by the co-solvent. The use of the (s(w))pH scale is recommended when working with ionized compounds in order to avoid parabolic relationships during linear extrapolation. The pH-dependent retention of three ionizable drugs on an IAM.PC.DD2 phase showed that secondary interactions with the charged moieties of the chromatographic surface affect the retention of ionized compounds around physiological pH. Finally, it was shown that column ageing occurs also with IAM.PC.DD2 stationary phases and that it depends on the column as well as on the investigated analyte. The intra-batch variability for IAM.PC.DD2 phases was small, whereas a marked and solute-dependent batch-to-batch variability was apparent.  相似文献   

9.
10.
There is a need for fast testing of drug candidates for properties of pharmacokinetics and pharmacodynamics importance, in particular lipophilicity and acidity. These two parameters can conveniently be estimated by gradient reversed-phase HPLC. Appropriate conventional organic solvent gradient and the new pH gradient HPLC procedures are presented. The chromatographic parameter of lipophilicity, log kw, can be determined from two organic solvent gradient runs instead of 6-8 runs necessary in the standard isocratic (polycratic) approach. The newly introduced pH gradient reversed-phase HPLC consists in a programmed increase during the chromatographic run of the eluting power of the mobile phase with regards to ionizable analytes. The eluting strength of the mobile phase increases due to its increasing (in case of acidic analytes) or decreasing (basic analytes) pH, whereas the content of organic modifier remains constant. It has been theoretically and experimentally demonstrated that the pKa and log kw values can be evaluated based on retention data from a pH gradient run, combined with appropriate data from two organic solvent gradient runs. The gradient HPLC-derived log kw parameters correlate well with analogous parameters determined isocratically as well as with reference lipophilicity parameter log P (logarithm of n-octanol/water partition coefficient). Also, the HPLC-derived pKa parameters correlate to the literature pKa values (w(w)pKa), conventionally determined by titrations in water. The approach described allows rapid and high-throughput assessment of log kw and pKa for large series of drugs candidates, also when the analytes are available in a form of mixture, e.g. produced by combinatorial synthesis.  相似文献   

11.
The lipophilicity of the series of alpha-(4-phenylpiperazin-1-yl)-gamma-phthalimido-butyramides (1-8) has been investigated. Several methods, like reversed-phase thin-layer chromatography and high-performance liquid chromatography using reversed-phase RP18 and IAM.DD2 columns, were applied to determine RMO, log k0 and log k(0IAM) factors. The RP-TLC investigations were performed in mixtures of acetone-water and acetonitrile-water. For RP-HPLC method mixtures of acetonitrile, water and 0.01% TFA were used as the mobile phases while for IAM.DD2 investigations mixtures of acetonitrile and water were applied. The partition coefficients of compounds (1-8) were also calculated with the Pallas and CAChe programs. All the obtained data, both from experimental methods and computational calculations, were compared and a suitable conclusion was reached.  相似文献   

12.
The retention constant (R(0)(m)) is determined for 11 selected adrenergic and imidazoline receptor ligands by reverse-phase-thin layer chromatography. It is established that the retention behavior of investigated compounds mostly depends on geometrical, electrostatic, and hydrogen bonding properties. Good correlations among hydrophobic parameters R(0)(m) versus log P for all eleven tested compounds are obtained. The satisfactory correlations are found between R(0)(m) versus apparent partition coefficient octanol-buffer pH 7.4 (log P') or apparent partition coefficient in four liposome systems (log K'(M)) and hypotensive activity (pC(25)) for five imidazolines. The results confirm the suitability of this parameter in quantitative structure-property and structure-activity relationships studies of these drugs.  相似文献   

13.
14.
The lipophilicity of a series of anticancer propargylthioquinoline derivatives has been investigated using chromatographic and computational methods. The parameters of relative lipophilicity (R(MO) and logk0) of the tested compounds were determined experimentally both by reversed-phase thin layer (RP-TLC), and high-performance liquid chromatographic methods (RP-HPLC, LiChrospher RP18 column), with mixtures of acetonitrile and water as mobile phases. Their phospholipophilicity (logk(0IAM)) was determined using immobilized artificial membrane HPLC (IAM. PC DD2 Regis column). Mobile phase acetonitrile concentrations were in the ranges 50-90% (RP-TLC), 55-90% (RP-HPLC) and 35-60% (IAM-HPLC). The R(M), logk and logk(IAM) values of the compounds investigated were linearly dependent on acetonitrile concentration. The analysis led to the calculation of R(MO), logk0 and logk(0IAM) parameter values for each of the tested compounds. Their partition coefficients (logP) were also calculated with the Pallas and CAChe programs. The obtained results indicated that, among experimental methods, both RP-TLC and RP-HPLC gave similar results, and these methods enable the determination of lipophilicity of derivatives of thioquinolines. Using the IAM-HPLC technique a simple method of estimation of phospholipoplilicity was described. The CAChe program might better predict calculated lipophilicity logP values, and therefore is a useful tool for the early stage of design of new propargyl thioquinolines.  相似文献   

15.
16.
Abstract

In recent times there has been a growing interest in the determination of chromatographic parameters of lipophilicity with regard to their use in the study of quantitative structure-activity relationship (1, 2). Very good correlations had been shown between the chromatographic parameters and the log P or π values as a measure of the partition coefficient between octanol and water (2). The reversed phase TLC Rm values in two different chromatographic systems and the reversed-phase HPLC log k′ values of a series of dermorphin-related oligopeptides have been previously determined (3, 4). The purpose of the present work was to study the relationship between log k′ values on one hand and Rm or Σπ values on the other one in view of QSAR studies. In fact the discovery of enkephalin and endorphins with high affinities for opioid receptors added new dimensions to the study of structure-activity relationship of opioid agonists (5, 6, 7, 8).  相似文献   

17.
This paper describes the evaluation of lipophilicity of alpha-(4-phenylpiperazine) derivatives of N-benzylamides. We employed reversed-phase thin-layer chromatography (RP-TLC) and reversed-phase high performance liquid chromatography (RP-HPLC) as experimental methods, using mixtures of acetonitrile and water as the mobile phases with addition of 0.1%TFA in the HPLC experiments. Retention parameters (R(M)) and capacity factors (log k) determined by applying these methods were linearly dependent on the acetonitrile concentration and enabled us to estimate the relative lipophilicity factors: R(M0) and log k(0). These factors were compared with the calculated partition coefficients C log P obtained using several software packages. The results indicate that both experimental methods (RP-TLC and RP-HPLC) yielded similar results, and these methods enable determining the lipophilicity of alpha-(4-phenylpiperazine) derivatives of N-benzylamides. Significant correlations were found between log P values calculated by Pallas, ALOGPS and C log P Chem3D programs and the experimental data.  相似文献   

18.
For flavour compounds, lipophilicity is often estimated by the partition coefficient between oil and water (log Koil-water), which is highly relevant to food. A modification of the shake-flask method is reported here where compounds are quantified in the two phases using solid-phase microextraction (SPME). SPME's highly sensitivity to non-polar compounds facilitates quantification in the water phase. Twelve flavour compounds representing a broad range of lipophilicities and functional groups were analysed by two methods. Their log Koil-water was determined using SPME quantitation and their log k(w) using a reversed-phase HPLC methodology. The isocratic capacity factor at 60% methanol and predicted log P value also showed high correlation factors with other methods. The octadecyl silylated surface of the HPLC column provides a matrix that interacts with lipophilic compounds where the retention time is the indication of lipophilicity. Both methods gave reproducible results (median 3% and 4% RSD) and similar but not identical values for lipophilicity. The relationship between the two methods is log k(w) =0.85 log Koil-water +0.48 with a correlation coefficient of 0.94. The new SPME detection method, with the ability to quantify limonene and 2-pentylfuran at 1 ppm in the water phase, is preferred for flavour compound analysis due to the applicability of oil-water partitioning in food.  相似文献   

19.
Retention for a varied group of compounds on an immobilized artificial membrane column (IAM PC DD2) with a methanol-water mobile phase is shown to fit a second-order model for the retention factor (log k) as a function of the volume fraction of organic solvent. The numerical value of the intercept obtained by linear extrapolation to zero organic solvent (log k(w)) is shown to depend on the range of mobile phase composition used for the extrapolation. Each series of intercepts so obtained represents a different hypothetical distribution system as identified by the system constants of the solvation parameter model. Although a linear model is a poor fit for isocratic retention data, the linear solvent strength gradient model provides a reasonable estimate of isocratic retention factor values that are (slightly) larger than experimental values, but provide the same chemical information for the system. These preliminary results suggest that gradient elution may prove to be a rapid and useful method for creating system maps for column characterization and method development. In this work a system map is provided for methanol-water compositions from 0 to 60% (v/v) methanol and additional system constants for acetonitrile-water compositions containing 20 and 30% (v/v) acetonitrile. It is shown that the main factors contributing to retention on the IAM PC DD2 column are favorable cavity formation and dispersion interactions, electron lone pair interactions and the hydrogen-bond basicity of the sorbent. The latter feature more than any other distinguishes the IAM column from conventional chemically bonded phases. Interactions of a dipole-type (weakly) and inability to compete with the mobile phase as a hydrogen-bond acid reduce retention. A comparison of system constant ratios is used to demonstrate that the retention properties of the IAM column are not easily duplicated by conventional chemically bonded phases. The retention characteristics of the IAM column, however, are strongly correlated with the retention properties of pseudostationary phases used for micellar electrokinetic chromatography, which provide a suitable alternative to IAM columns for physical property estimations. By the same comparative method it is shown that retention on the IAM column possesses some similarity to biomembrane absorption processes, allowing suitable correlation models to be developed for the estimation of certain biopartitioning properties.  相似文献   

20.
Summary A group of 17 β-carbolines was studied in HPLC and TLC systems in order to predict their partition coefficients (log P values). On account of the basic or acid character of some of these compounds, an ion pairing system gave the best results. Both HPLC and TLC data were comparable for log P prediction but severe pH conditions required the use of TLC plates. Retention data are quantitatively related to lipophilicity (expressed as the Hansch constant) and polarity (as the inductive constant) of the solute molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号