首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of atomic disordering on the magnetic, electrical, and optical properties of the Pt74.1Fe25.9alloy close in composition to the stoichiometric Pt3Fe alloy has been studied. It has been shown that, as a result of severe plastic torsional deformation under high pressure, the alloy transforms from the antiferromagnetic state (T N=164 K) into the ferromagnetic state (T C≈400 K). In this case, the residual electrical resistivity increases by a factor of more than two and the thermopower changes its sign from positive to negative. The results of the studies of the optical conductivity agree with the previously calculated electronic spectra of the atomically ordered and disordered Pt3Fe alloys in the range of interband transitions and with the obtained data on the electrical properties in the infrared range.  相似文献   

2.
The electrical, magnetic, and optical properties of the Cu72Au24Ag4 ternary alloy in the ordered and disordered states have been studied by the method of severe torsional plastic deformation under pressure in Bridgman anvils. It has been shown that, as a result of this deformation, the residual electrical resistivity of the alloy increases by approximately 11% and the magnitude of the negative thermopower decreases. The high diamagnetic susceptibility of the alloy has been explained by a significant role of charge carriers with the effective mass considerably smaller than the free-electron mass. The behavior of the optical conductivity has been discussed with due regard for the results of energy-band calculations. The experimental data obtained for the Cu72Au24Ag4 alloy have been compared with the results of similar studies of the Cu3Au binary alloy.  相似文献   

3.
The electronic spectra and relative permittivity of ultrathin (1–3 QL) films of Bi2Se3 topological insulator have been calculated by the density functional theory. The calculated spectra exhibit a characteristic feature: the range of 0.0–0.9 eV below the Fermi level contains two doubly degenerate valence bands (“U-bands”), which are geometrically congruent to low-lying spectral branches in the conduction band. It has been shown that the saturation of optical absorption can result in a significant rearrangement of the electronic structure and properties in the near infrared spectral range in the considered film. In particular, the semiconductor (in the absence of interaction with light) type of conductivity of the film can be changed to the metallic type of conductivity strongly nonlinear in the intensity of light.  相似文献   

4.
The optical properties of RuAl2 and RuGa2 intermetallic compounds have been investigated in the spectral range of 0.22–14 μm. The nature of interband light absorption has been interpreted based on a comparative analysis of calculated and experimental frequency dependences of optical conductivity. The data obtained confirm the existence of pseudogaps with a width of ~0.8 eV localized at the Fermi level in the electron densities of states of these materials, which was predicted in previous energy-band calculations.  相似文献   

5.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

6.
We have analyzed the electrical and optical properties of Cu2ZnSnS4, Cu2FeSnS4, and Cu2MnSnS4 films with the p-type electrical conductivity, which were prepared by spray pyrolysis at temperature TS = 290°C using 0.1 M aqueous solutions of salts CuCl2 · 2H2O, ZnCl2 · 2H2O, MnCl2 · 2H2O, FeCl3 · 6H2O, SnCl4 · 5H2O, and (NH2)CS. The energy parameters have been determined from analyzing the electrophysical properties of the films using the model of energy barriers at grain boundaries in polycrystalline materials, and the thickness of intercrystallite boundaries has been estimated. The extent of the influence of the hole concentration p0 in the bulk of crystallites and height E b of the energy barriers between grains on the electrical conductivity has been determined. The optical bandgap width for thin Cu2Zn(Fe,Mn)SnS4 films has been calculated based on analyzing the spectral dependences of the absorption coefficient.  相似文献   

7.
Photoacoustic spectroscopy (PAS) is one of the important branches of spectroscopy, which enables one to detect light-induced heat production following the absorption of pulsed radiation by the sample. As2S3, As2Se3 and GeSe2 exhibit a wide variety of photo-induced phenomena that enable them to be used as optical imaging or storage medium and various electronic devices, including electro-optic information storage devices and optical mass memories. Therefore, accurate measurement of thermal properties of semiconducting films is necessary to study the memory density. The thermal conductivity of thin films of As2S3 (thickness 100 μm and 80 μm), As2Se3 (thickness 100 μm and 80 μm) and GeSe2 (thickness 120 μm and 100 μm) has been measured using PAS technique. Our result shows that the thermal conductivity of thicker films is larger than the thinner films. This can be explained by the thermal resistance effect between the film and the surface of the substrate.   相似文献   

8.
The structural, electronic, and magnetic properties of the binary and ternary carbides (Fe,Cr)3C and (Fe,Cr)7C3 have been investigated within the ab initio density functional theory. The crystal structure of the binary carbides has been optimized and the preferred positions for replacement of chromium or iron impurities in the corresponding carbides have been determined. The changes in the electronic structure and magnetic properties have been investigated, the formation energies of the ternary carbides as functions of the impurity concentrations have been calculated, and conclusions have been drawn regarding the influence of the impurity on the stability of the carbides under investigation.  相似文献   

9.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

10.
Structural, electronic, and optical properties of cubic Y2O3 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties were calculated and these results were in good agreement with the previous work. Furthermore, in order to understand the optical properties of cubic Y2O3, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss function, and complex conductivity function were calculated, which were in favorable agreement with the theoretical and experimental values. We explained the origin of the absorption peaks using the theories of crystal-field and molecular-orbital bonding and investigated the relation between electronic structure and optical properties.  相似文献   

11.
The electronic structure and optical properties of the hexagonal intermetallic compound Gd5Si3 are investigated. The spin-polarization calculation of the band spectrum is performed in the local spin density approximation, taking account for the strong electron correlations in the 4 f shell of a Gd ion (LSDA + U method). Optical constants of the compound in the wavelength range of 0.22–15 μm are determined by the ellipsometry technique and some spectral characteristics are calculated. The frequency dependence of optical conductivity in the light quantum absorption region is analyzed on the basis of the calculated electron density of states.  相似文献   

12.
Ellipsometric investigations of the optical properties of Ru2Ge3 and Ru2Sn3 intermetallic compounds are carried out in the wavelength range from 0.22 to 15 μm. The nature of interband light absorption is analyzed based on a comparative analysis of the experimental and theoretical frequency dependences of an optical conductivity. The obtained results confirm the existence of energy gaps at the Fermi level in the electronic spectra of these materials predicted earlier by the band-structure calculations.  相似文献   

13.
The thermal conductivity and the heat capacity of a single crystal of bismuth orthogermanate Bi4Ge3O12 have been experimentally investigated in the temperature ranges 50–300 and 56–300 K, respectively. The temperature dependences of the phonon mean free path, the characteristic Debye temperature, and the changes in the entropy and enthalpy have been calculated.  相似文献   

14.
The dynamic Born charges and the frequency spectra of lattice oscillations in the crystals of ordered and disordered PbSc1/2Ta1/2O3 (PST) and PbSc1/2Nb1/2O3 (PSN) solid solutions have been calculated within the framework of the generalized Gordon-Kim model with allowance for the dipole and quadrupole polarizabilities. The phonon spectra of both compounds contain ferroelectric soft modes. The influence of various interactions on the magnitude of dynamic charges and ferroelectric instability in PSN and PST solid solutions has been studied and it is shown that both these charges and the ferroelectric instability are determined by the competition between long-range dipole-dipole interactions and short-range dipole-charge interactions, the determining role played by the interaction of Nb (Ta) cations and oxygen anions in the Nb-O (Ta-O) bond direction.  相似文献   

15.
Glassy LiPO3/crystalline Al2O3 and glassy LiPO3/crystalline ZrO2 (0–12.5 vol.% of oxide fillers) composite solid electrolytes have been prepared by glass matrix softening. Their thermal and transport properties have been investigated by differential scanning calorimetry (DSC) and impedance spectroscopy methods. The addition of ZrO2 leads to a decrease in the crystallization temperature of LiPO3 glass. It was found that the conductivity behavior depends on the nature of the dispersed addition. In the case of the Al2O3 addition, the increase in the electrical conductivity is observed. The ionic conductivity of the LiPO3/10% Al2O3 composite reaches 5.8 × 10?8 S/cm at room temperature. In contrast, the conductivity in the LiPO3/ZrO2 composite system decreases.  相似文献   

16.
The optical properties of intermetallic compounds TbNi2Mnx (x = 0, 0.5, 1) have been investigated using the ellipsometric method in the spectral range from 0.22 to 16 μm. The specific features of the modification of the dispersions of spectral characteristics with a variation in the manganese concentration have been determined. The behavior of the frequency dependences of the optical conductivity in the interband absorption region has been discussed in terms of the available data on the electronic structure of these compounds. The concentration dependences of a number of electronic parameters have been calculated.  相似文献   

17.
The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.  相似文献   

18.
Electrical complex ac conductivity of the compound Li0.9[Ni1/3Mn1/3Co1/3]O1.95 has been studied in the frequency range 10 Hz–2 MHz and in the temperature range 93–373 K. It has been observed that the frequency dependence of the ac conductivity obeys a power law and the temperature dependence of the ac conductivity is quite weak. The experimental data have been analyzed in the framework of several theoretical models based on quantum mechanical tunneling and classical hopping over barriers. It has been observed that the electron tunneling is dominant in the temperature range from 93 K to 193 K. A crossover of relaxation mechanism from electron tunneling to polaron tunneling is observed at 193 K. Out of the several models discussed, the electron tunneling and the polaron tunneling models are quite consistent with the experimental data for the complex ac conductivity. The various parameters obtained from the fits of the experimental results for the real and imaginary parts of the conductivity to the predictions of these models are quite reasonable.  相似文献   

19.
Amorphous nonstoichiometric ZrOx films of different composition have been synthesized by the method of ion-beam sputtering deposition of metallic zirconium in the presence of oxygen at different partial oxygen pressures in the growth zone, and their optical properties have been studied in the spectral range of 1.12–4.96 eV. It is found that light-absorbing films with metallic conductivity are formed at the partial oxygen pressure below 1.04 × 10–3 Pa and transparent films with dielectric conductivity are formed at the pressure above 1.50 × 10–3 Pa. It is shown that the spectral dependences of optical constants of ZrOx films are described well by the corresponding dispersion models: the Cauchy polynomial model for films with dielectric conductivity and the Lorentz–Drude oscillator model for films with metallic conductivity.  相似文献   

20.
The magnetic moment M, the magnetic susceptibility χ, and the thermal conductivity of chalcopyrite CuFeS2, which is a zero-gap semiconductor with antiferromagnetic ordering, have been measured in the temperature range 10–310 K. It has been revealed that the quantities χ(T) and M(T) increase anomalously strongly at temperatures below ∼100 K. The temperature dependence M(T) is affected by the magnetic prehistory of the sample. An analysis has demonstrated that the magnetic anomalies are associated with the presence of a system of noninteracting magnetic clusters in the CuFeS2 sample under investigation. The formation of the clusters is most likely caused by the disturbance of the ordered arrangement of Fe and Cu atoms in the metal sublattice of the chalcopyrite, which is also responsible for the phase inhomogeneity of the crystal lattice. The inhomogeneity brings about strong phonon scattering, and, as a result, the temperature dependence of the thermal conductivity coefficient exhibits a behavior characteristic of partially disordered crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号