首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
导电高分子/贵金属复合纳米材料因其在催化、传感、表面增强拉曼、光热治疗等诸多领域的应用前景而受到广泛关注.本文主要介绍我们课题组近年来利用可控合成策略制备的负载型和包埋型两种结构聚苯胺/贵金属复合纳米材料,以及利用复合纳米材料的结构和功能特性,对其在多相催化领域的应用、结构与催化性能之间构效关系的探索.  相似文献   

2.
New enabling chemistries have been developed to produce novel well‐defined polymeric materials through the additions of small amounts of reactive functional compounds to standard polymers during regular processing steps. We found that carbonyl biscaprolactam and its derivatives couple polymer chains in a strictly linear fashion. The requirements for fast and well‐controlled coupling reactions, a prerequisite to apply this modular concept, were met. The breakthrough to produce a wide variety of novel polymers came when we found that many building blocks, provided with functional groups and blocked isocyanate groups, could be made on the basis of this chemistry. Blocked isocyanate groups are very suitable coupling units to fix desired functions onto polymer backbones. In one example, antifouling coatings were prepared by introducing fluorine groups. In another case, blocked isocyanate functional acrylates were built into a polyacrylate to make self‐crosslinkable coatings. In another illustration, the concept was demonstrated by a novel route to prepare polyrotaxanes from rotaxane monomers provided with blocked isocyanates as polymerizable stopper groups. These reactive functional compounds gave, in a controlled manner, polymeric materials with substantially improved properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3198–3205, 2003  相似文献   

3.
Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, “click” reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects: (1) Constructions of monocyclic polymer using CuAAC “click” chemistry; (2) Formation of complex cyclic polymer topologies through CuAAC reactions; (3) Using CuAAC “click” reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.  相似文献   

4.
Post-synthesis modification of polymers streamlines the synthesis of functionalized polymers, but is often incomplete due to the negative polymer effects. Developing efficient polymer reactions in artificial systems thus represents a long-standing objective in the fields of polymer and material science. Here, we show unprecedented macrocycle-metal-complex-catalyzed systems for efficient polymer reaction that result in 100 % transformation of the main chain functional groups presumably via a processive mode reaction. The complete polymer reactions were confirmed in not only intramolecular reaction (hydroamination) but also intermolecular reaction (hydrosilylation) by using Pd- and Pt-macrocycle-catalyzed systems. The most fascinating feature of the both reactions is that higher-molecular-weight polymers reach completion faster. Various studies suggested that the reactions occur in the catalyst cavity via the formation of a supramolecular complex between the macrocycle catalyst and polymer substrate like pseudorotaxane, which should be of characteristic of the efficient polymer reactions progressing in a processive mode.  相似文献   

5.
Post‐polymerization modification is based on the direct polymerization or copolymerization of monomers bearing chemoselective handles that are inert towards the polymerization conditions but can be quantitatively converted in a subsequent step into a broad range of other functional groups. The success of this method is based on the excellent conversions achievable under mild conditions, the excellent functional‐group tolerance, and the orthogonality of the post‐polymerization modification reactions. This Review surveys different classes of reactive polymer precursors bearing chemoselective handles and discusses issues related to the preparation of these reactive polymers by direct polymerization of appropriately functionalized monomers as well as the post‐polymerization modification of these precursors into functional polymers.  相似文献   

6.
The development of reliable and reproducible chemistries for the immobilization of biomolecules to a conducting polymer is a key challenge in the design and preparation of a CP‐based biosensor. In this article, the syntheses and electropolymerization of a series of new 3‐alkylthiophene derivatives functionalized with the most used reactive groups in immobilization chemistry, including maleimide, azide, and anhydride, are described. Despite the nucleophilic or electrophilic nature of the reactive groups, the synthesized thiophene monomers exhibit rather good polymerizability, and the reactive groups withstand the polymerization conditions and are correctly incorporated into the resulting electroactive polymers. The reactivity of the pendant reactive groups of the resulting polymers to attach biomolecules has been examined with different redox‐active, photoactive compounds as well as recognition elements as model compounds. It has been confirmed that with well‐established procedures developed for the immobilization of enzymes, the model compounds can be easily and selectively bound onto these new conducting polymers without the loss of their optical and electrochemical activity. Therefore, these conductive materials with a broad spectrum of reactive groups will provide a useful platform for developing CP‐based biosensors for a wide range of applications. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4547–4558, 2005  相似文献   

7.
Polymers are an integral part of our daily life. Hence, there are constant efforts towards synthesizing novel polymers with unique properties. As the composition and packing of polymer chains influence polymer''s properties, sophisticated control over the molecular and supramolecular structure of the polymer helps tailor its properties as desired. However, such precise control via conventional solution-state synthesis is challenging. Topochemical polymerization (TP), a solvent- and catalyst-free reaction that occurs under the confinement of a crystal lattice, offers profound control over the molecular structure and supramolecular architecture of a polymer and usually results in ordered polymers. In particular, single-crystal-to-single-crystal (SCSC) TP is advantageous as we can correlate the structure and packing of polymer chains with their properties. By designing molecules appended with suitable reactive moieties and utilizing the principles of supramolecular chemistry to align them in a reactive orientation, the synthesis of higher-dimensional polymers and divergent topologies has been achieved via TP. Though there are a few reviews on TP in the literature, an exclusive review showcasing the topochemical synthesis of polymers with advanced structural features is not available. In this perspective, we present selected examples of the topochemical synthesis of organic polymers with sophisticated structures like ladders, tubular polymers, alternating copolymers, polymer blends, and other interesting topologies. We also detail some strategies adopted for obtaining distinct polymers from the same monomer. Finally, we highlight the main challenges and prospects for developing advanced polymers via TP and inspire future directions in this area.

This perspective showcases the potential of topochemical polymerization as an effective tool for synthesizing polymers with advanced molecular and supramolecular structures.  相似文献   

8.
环状聚合物具有不同于线性高分子的独特性质,是一类具有应用前景的新型聚合物材料,但复杂的结构导致其合成过程复杂繁琐."点击"化学由于其高效、可靠、高选择性的特点已成为拓扑高分子合成的新方法,活性自由基聚合(ATRP、RAFT和NMP)具有聚合物结构可控等特点,二者联用为环状聚合物的合成拓宽了思路.本文就近几年"点击"反应、"点击"反应与活性自由基聚合联用以及其他方法联用在环状聚合物中的应用进行综述."点击"反应与这些方法的结合将在功能性环状聚合物的设计与合成中发挥积极的作用.  相似文献   

9.
In the past decades click chemistries including thiol chemistries have found wide applications in the synthesis of well-defined polymers. In this research, a click-declick strategy based on the oxidation of heteroaromatic thioethers and the substitution reactions between the oxidized groups and thiols, is proposed for the synthesis of the cleavable polymers. In proof-of-concept experiments, block copolymers (BCPs) and star-like polymers are synthesized by thiol-phenylsulfone substitution reactions, and heteroaromatic thioethers are produced at the junction points of the BCP chains or on the crosslinking sites of the star-like polymer. The thioethers can be oxidized to heteroaromatic sulfoxides or sulfones, depending on the oxidization condition. It is demonstrated that both sulfoxides or sulfones can have base catalyzed nucleophilic substitution reactions with thiols, leading to the cleavage of the polymers.  相似文献   

10.
This paper on recent developments in the use of photoinitiating systems in polymer synthesis concentrates on: (i) the possiblity of controlled//living polymerization by photopolymerization, (ii) major photoinitiating systems for both cationic and radical polymerization and (iii) preparation of block copolymers and functional polymers by photoinduced processes. Much progress has been made in the past ten years in preparation of block copolymers by photoinduced reactions of either chromophoric groups incorporated into polymers or low‐molecular‐weight compounds with suitable functional groups present in polymer chains.  相似文献   

11.
A photochemical strategy enabling λ‐orthogonal reactions is introduced to construct macromolecular architectures and to encode variable functional groups with site‐selective precision into a single molecule by the choice of wavelength. λ‐Orthogonal pericyclic reactions proceed independently of one another by the selection of functional groups that absorb light of specific wavelengths. The power of the new concept is shown by a one‐pot reaction of equimolar quantities of maleimide with two polymers carrying different maleimide‐reactive endgroups, that is, a photoactive diene (photoenol) and a nitrile imine (tetrazole). Under selective irradiation at λ=310–350 nm, any maleimide (or activated ene) end‐capped compound reacts exclusively with the photoenol functional polymer. After complete conversion of the photoenol, subsequent irradiation at λ=270–310 nm activates the reaction of the tetrazole group with functional enes. The versatility of the approach is shown by λ‐orthogonal click reactions of complex maleimides, functional enes, and polymers to the central polymer scaffold.  相似文献   

12.
In the course of plasma deposition of organic–polymeric thin films, radicals are incorporated into the growing film. These radicals initiate spontaneous oxidation reactions that continue over many weeks when the plasma polymers are stored in air. These reactions and their products have been previously studied in detail for spectroscopically simple, hydrocarbon-based plasma polymers. In this investigation, the aging of 1,3-diaminopropane (DAP) plasma polymer samples was monitored by XPS and FTIR in order to study how the oxidative reaction pathways might differ in a plasma-deposited material that is initially rich in amine groups. The freshly deposited DAP plasma polymer consisted of a random hydrocarbon network with a considerable amount of unsaturation and a high concentration of nitrogen-containing functional groups, mainly primary/secondary amines and imines. These groups strongly influenced the aging reactions: in contrast to hydrocarbon-based material where hydrogen abstraction and reaction of carbon-centered radicals with in-diffusing oxygen result in a wide range of oxidative products, both XPS and FTIR identified a rather narrow range of products (mainly amides and similar groups) in DAP plasma polymers even after extensive aging for more than 2 years. Reaction routes based on oxidation and/or hydrolysis of nitrogen functional groups, and involving primary as well as secondary reactions, are proposed to account for the spectroscopic data. The structure of the aged DAP plasma polymer appeared to be stable, and did not undergo more extensive oxidation, in contrast to hydrocarbon plasma polymers. In particular, carboxylic acid groups and carbamates were not detected. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2191–2206, 1999  相似文献   

13.
由于表面效应、小尺寸效应和量子效应,使纳米结构的导电聚合物材料与传统聚合物材料相比,显示出更优越的性能。基于神经组织对电场和电刺激敏感性,使得导电聚合物纳米材料在生物医学应用方面很有前景。本文综述了纳米结构的导电聚合物的合成方法,及其在生物医学领域的应用。合成方法主要关注于硬模板法、软模板法和无模板自组装法,以及这些方法中导电聚合物纳米结构的形成机理。总结了具有纳米结构的导电聚合物,如纳米颗粒、纳米纤维和纳米管等作为神经电极涂层材料和生物传感器等方面的应用。  相似文献   

14.
Recent developments of new synthetic methods are stimulating the design of new polymers. Modern generations of highly active and selective transition metal catalysts give excellent control on molecular weight, regio- and stereoregularities, long- and short-chain-branching, polymer crystallization, and morphology of olefin, diene, cyclolefin, and styrene polymers. Ethene is copolymerized with polar comonomers such as carbon monoxide and acrylates in new low pressure processes. Catalytic coupling reactions of aromatic halogen compounds and bisphenols afford rigid polyarylenes. „Living” radical polymerization (“TEMPO” and “ATRP”) produce a wide range of telechelics, block copolymers and cascade macromolecules. In reactive processing oxazoline-mediated coupling reactions are the key to melt diversification of well-known polymers. Supramolecular concepts are being applied to tailor hybrid polymers and nanocomposites. Precision in polymer synthesis is the key to new materials with wide application range.  相似文献   

15.
Microemulsions are often used in the synthesis of nanoparticles in solution. In this work, we put forward the concept of a "hard microemulsion", which is based on the differential partitioning of water and ethanol solvent molecules inside functional polymer matrices. When the mixture of water and organic solvent enters the functional polymer, the liquid molecules should partition to different regions. Water should concentrate in the microdomains rich in hydrophilic functional groups, forming water-enriched cores, whereas organic solvents should localize near the alkyl polymer skeleton, forming organic liquid enriched outer layers. From a macroscopic view, the swollen polymer matrix is divided into numerous "microdroplets", resembling frozen water-in-oil microemulsions. We define such a structure as a "hard microemulsion". The water-enriched microdroplets may act as templates for synthesizing inorganic nanoparticles. We demonstrate the utility of hard microemulsions for the controllable synthesis of silver and platinum nanoparticles inside different macroreticular functional polymers.  相似文献   

16.
The ability to produce robust and functional cross-linked materials from soluble and processable organic polymers is dependent upon facile chemistries for both reinforcing the structure through cross-linking and for subsequent decoration with active functional groups. Generally, covalent cross-linking of polymeric assemblies is brought about by the application of heat or light to generate highly reactive groups from stable precursors placed along the chains that undergo coupling or grafting reactions. Typically, these strategies suffer from a general lack of control of the cross-linking chemistry as well as the fleeting nature of the reactive species that precludes secondary chemistry. We have addressed both of these issues using orthogonal chemistries to effect both cross-linking and subsequent functionalization of polymer films by mild heating, which results in exacting control of the cross-link density as well as the density of the residual stable functional groups available for subsequent, stepwise functionalization. This methodology is exploited to develop a strategy for the independent and orthogonal triple-functionalization of cross-linked polymer thin-films through microcontact printing.  相似文献   

17.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。  相似文献   

18.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

19.
Comb-like polymers have been widely investigated mainly to correlate their structures with the thermal behaviour. Our interests are directed on the synthesis of new types of comb-like polymers bearing reactive groups in the side chains, main chain or as end groups. One part of the investigations deals with the behaviour of photosensible polymers containing azobenzene, cinnamic acid and mesoionic moieties. The use of enzymes as catalysts for the synthesis of new methacrylic derivatives and for the modification of polymers illustrates a fascinating contribution to polymer chemistry. The classical Diels-Alder addition was also used for the synthesis and modification of polymers. Finally, the construction of polymers containing rotaxanes in the side chains is presented.  相似文献   

20.
The synthesis of block copolymers via polymer conjugation of well‐defined building blocks offers excellent control over the structures obtained, but often several coupling strategies need to be explored to find an efficient one depending on the building blocks. To facilitate the synthesis of polymers with adjustable functional end‐groups for polymer conjugation, we report on the combination of activated ester chemistry with RAFT polymerization using a chain transfer agent (CTA) with a pentafluorophenyl ester (PFP‐CTA), which allows for flexible functionalization of either the CTA prior to polymerization or the obtained polymer after polymerization. Different polymethacrylates, namely PMMA, P(t‐BuMA) and PDEGMEMA, were synthesized with an alkyne‐CTA obtained from the aminolysis of the PFP‐CTA with propargylamine, and the successful incorporation of the alkyne moiety could be shown via 1H and 13C NMR spectroscopy and MALDI TOF MS. Further, the reactive α‐end‐groups of polymers synthesized using the unmodified PFP‐CTA could be converted into azide and alkyne end‐groups after polymerization, and the high functionalization efficiencies could be demonstrated via successful coupling of the resulting polymers via CuAAC. Thus, the PFP‐CTA allows for high combinatory flexibility in polymer synthesis facilitating polymer conjugation as useful method for the synthesis of block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号