首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The combined use of nonintrusive polynomial chaos (PC) and adjoint equations (yielding the gradient) is addressed aimed at the estimation of uncertainty of a valuable functional subject to large errors in the input data. Random variables providing maximum impact on the result (leading values) may be found using the gradient information that allows reduction of the problem dimension. The gradient may be also used for the calculation of PC coefficients, thus enabling further acceleration of the computations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers the computation of flow sensitivities that arise in the context of design optimization. The scheme is based on the solution of a continuous adjoint problem, for which two complementary, although analytically equivalent, approaches have been routinely used for some time now, yielding expressions for the sensitivities that contain, respectively, boundary and domain integrals. These concepts are clarified in a unified framework and their equivalence at the continuous level is demonstrated through appropriate algebraic manipulations. Equivalence at the discrete level is assessed through numerical testing for various aerodynamic shape‐optimization problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopts time-averaged aerodynamic coefficients as objective functions is presented. The time-accurate continuous adjoint equation and its boundary conditions are derived. The flow field and the adjoint equation are simulated numerically by the finite volume method (FVM). Feasibility and accuracy of the approach are perfectly validated by the design optimization results of the plunging NACA0012 airfoil.  相似文献   

4.
介绍了非嵌入多项式混沌法的数学模型,给出了非嵌入式多项式混沌法进行不确定度量化的主要步骤。采用此方法研究了平面、散心爆轰问题数值模拟中, JWL模型参数R1、R2服从均匀分布的随机变量时所引起的爆轰过程计算结果的不确度性,着重分析了爆轰传播过程中压力与密度的统计特性。研究结果表明,非嵌入式多项式混沌法可以为模型输入参数不确定性的传播对输出结果响应量的影响建立一种有效不确定度评估方法,为使用JWL模型时选取参数提供参考。  相似文献   

5.
Discrete and continuous adjoint approaches for use in aerodynamic shape optimization problems at all flow speeds are developed and assessed. They are based on the Navier–Stokes equations with low Mach number preconditioning. By alleviating the large disparity between acoustic waves and fluid speeds, the preconditioned flow and adjoint equations are numerically solved with affordable CPU cost, even at the so‐called incompressible flow conditions. Either by employing the adjoint to the preconditioned flow equations or by preconditioning the adjoint to the ‘standard’ flow equations (under certain conditions the two formulations become equivalent, as proved in this paper), efficient optimization methods with reasonable cost per optimization cycle, even at very low Mach numbers, are derived. During the mathematical development, a couple of assumptions are made which are proved to be harmless to the accuracy in the computed gradients and the effectiveness of the optimization method. The proposed approaches are validated in inviscid and viscous flows in external aerodynamics and turbomachinery flows at various Mach numbers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Topology optimization of fluid dynamic systems is a comparatively young optimal design technique. Its central ingredient is the computation of topological sensitivity maps. Whereas, for finite element solvers, implementations of such sensitivity maps have been accomplished in the past, this study focuses on providing this functionality within a professional finite volume computational fluid dynamics solver. On the basis of a continuous adjoint formulation, we derive the adjoint equations and the boundary conditions for typical cost functions of ducted flows and present first results for two‐ and three‐dimensional geometries. Emphasis is placed on the versatility of our approach with respect to changes in the objective function. We further demonstrate that surface sensitivity maps can also be computed with the implemented functionality and establish their connection with topological sensitivities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
天线小型化设计需要基于先进的设计方法,基于拓扑优化的设计往往存在灰度单元,因此设计结果无法直接应用,需要进一步规整设计。而对于电磁金属结构,粗糙的规整方法会引起结构性能的很大变化以致偏离最优结果。提出一种拓扑优化和形状优化相结合的方法,用于金属天线结构的小型化设计。该方法通过拓扑优化获得金属天线结构的概念构型,进而利用形状优化对概念构型进行边界规整和精细化设计。形状优化方法采用多控制点贝塞尔曲线描述拓扑概念构型,通过贝塞尔曲线控制点的移动实现天线构型的调控。给出了贝塞尔曲线控制点的设置原则,基于拓扑优化得到场量分布结果,利用较少的贝塞尔曲线控制点实现天线拓扑构型结构特征的有效调控。该方法可以获得无灰度单元残留的拓扑结果,同时可有效避免密度阈值规整方法中天线性能改变的问题,并且获得的拓扑构型边界光滑。数值算例表明拓扑优化和形状优化相结合方法的有效性。此外,该方法可拓展到其他类型电磁器件的优化设计中。  相似文献   

8.
The purpose of this study is to obtain an optimal shape of a body located in an incompressible viscous flow. The optimal shape of the body is defined so as to minimize the fluid forces acting on it by determining the surface coordinates based on the finite element method and the optimal control theory. The performance function, which is used to judge the optimality of a shape, is defined as the square sum of the drag and lift forces. The minimization problem is solved using an adjoint equation method. The gradient in the adjoint equation is affected by the finite element configuration. The use of a finite element mesh whose shape is appropriate for the procedure is important in shape optimization. If the finite element mesh used is not suitable for computations, the exact gradient is not calculated. Therefore, a structured mesh is used for the adjacent area of the body and all finite element meshes are refined using the Delaunay triangulation at each iteration computation. The weighted gradient method is applied as the minimization technique. Using an algorithm in which all nodal coordinates on the surface of the body are employed and starting from a circle as an initial shape, a front‐edged and rear‐round shape is obtained because of the vortices at the back of the body. To overcome this difficulty, we introduced the partial control algorithm, in which some of the nodal coordinates on the surface of the body are updated. From four cases of computational studies, we reveal that the optimal shape has both sharp front and sharp rear edges. All computations are conducted at Reynolds number Re=250. The minimum value of the performance function is obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
讨论了动应力、动位移约束下离散变量状优化设计问题。首先用拟静力算法,将结构惯性力极值作为静载荷施加到结构上,求得结构的动位移和动内力,然后将考虑动应力约束和动作移约束的离散变量结构优化设计问题化为静应力和静位移约束的优化问题。在求解过程中,将单元内力作了一阶近似,并将多约束问题转化为单约束问题,然后利用两类变量统一考虑的离散变量结构形状优化设计的综合算法进行求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号