首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Polymeric phosphonate esters are an interesting class of organophosphorus polymers because both the polymer backbone and phosphorus substituents can be modified. These polymers have been prepared by ring-opening polymerizations of cyclic phosphites, stoichiometric polycondensations of dimethyl phosphonate with diols in conjunction with diazomethane treatment and by transesterification of polyphosphonate oligomers. Our initial attempts to prepare high molecular weight polymeric phosphonate esters by the transesterification methods were unsuccessful. Results indicate that the reactions of dimethyl phosphonate with diols to form polyphosphonate oligomers with only methyl phosphonate end groups are plagued by a serious side reaction that forms phosphonic acid end groups. These end groups do not participate in the transesterification reaction and limit the molecular weights of the polymers that can be obtained. The phosphonic acid end groups can be converted into reactive methyl phosphonate end groups by treatment with diazomethane, however diazomethane is explosive and the polymerization is slow. An alternative route for the production of high molecular weight polymers is the transesterification of the 1,12-bis(methyl phosphonato)dodecane, formed by the reaction of excess dimethyl phosphonate and 1,12-dodecanediol, with a Na2CO3 promoter. This allows polymers with molecular weights of up to 4.5×104 to be prepared, and no phosphonic acid end groups are observed in these polymers. Thermal analyses of the poly(1,12-dodecamethylene phosphonate) have shown that this polymer has reasonable thermal stability (onset of thermal decomposition at 273 °C). This polymer also undergoes a cold crystallization process at 15 °C similar to that which has been observed in some polyesters, polyamides and elastomers.  相似文献   

2.
Abstract

Aliphatic polyesters, such as poly(lactic acids), need high molecular weight for acceptable mechanical properties. This can be achieved through ring-opening polymerization of lactides. The lactide route is, however, relatively complicated, and alternative polymerization routes are of interest. In this paper we report the properties of a polymer made by a two-step process: first a condensation polymerization of lactic acid and then an increase of the molecular weight with diisocyanate. The end product is then a thermoplastic poly(ester-urethane). The hydroxylterminated prepolymer was made with condensation polymerization of L–lactic acid and a small amount of 1,4-butanediol. The polymerization was performed in the melt under nitrogen and reduced pressure. The preparation of poly(ester-urethane) was done in the melt using aliphatic diisocyanates as the chain extenders reacting with the end groups of the prepolymer. The polymer samples were carefully characterized, including preliminary degradation studies. The results indicate that this route to convert lactic acid into thermoplastic biodegradable polymer has high potential. Lactic acid is converted into a mechanically attractive polymer with high yield, which could make the polymer suitable for high volume applications. The mechanical properties of the poly(ester-urethane) are comparable with those of poly(lactides). Capillary rheometer measurements indicate that the polymer is processible both by injection molding and extrusion.  相似文献   

3.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

4.
The Milstein catalyst has proven to be highly effective for the conversion of alcohols to esters, as well as alcohols and amines to amides and polyamides. We have recently found that the catalyst's range can be extended to very efficient in vacuo dehydrogenation polymerization of α,ω‐diols to generate polyesters. The gaseous hydrogen byproduct that is produced is easily removed to drive the equilibrium toward product, which leads to the formation of high molecular weight polymer ( up to 145 000 g mol−1). This optimized methodology works well to polymerize diols with a spacer of six carbons or more. Diols with fewer carbons are cyclized to lactone; the dividing point is the dehydrogenation of 1,5‐pentanediol, which leads to a mixture of polyester and lactone. Reported herein is the synthesis and characterization of five aliphatic polyesters prepared via this novel dehydrogenation polymerization approach.  相似文献   

5.
Well-defined aliphatic polyesters, polyglycolide (PGA), polylactide (PLA) and their copolymers (PLGA) were prepared by chain-growth polycondensation of potassium 2-bromocarboxylates in solid-liquid phase. The polymerization proceeded in a living fashion without any side reactions. The degrees of polymerization (Dp) of polyesters was in agreement with the feed ratio of monomer to initiator. The polymer, which was only composed of heptamer, octamer and nonamer, possessed a narrow molecular weight distribution. Furthermore, the end groups of polymers, such as allyl and phenyl units, were directly yielded during the polymerization for the further modifying and crosslinking. The synthesized polyesters with allyl end groups were successfully crosslinked, and the products possessed biodegradability in phosphate buffer solution at 37 °C.  相似文献   

6.
The well-known dynamic kinetic resolution of secondary alcohols and esters was extended to secondary diols and diesters to afford chiral polyesters. This process is an example of iterative tandem catalysis (ITC), a polymerization method where the concurrent action of two fundamentally different catalysts is required to achieve chain growth. In order to procure chiral polyesters of high enantiomeric excess value (ee) and good molecular weight, the catalysts employed need to be complementary and compatible during the polymerization reaction. We here show that Shvo's catalyst and Novozym 435 fulfil these requirements. The optimal polymerization conditions of 1,1'-(1,3-phenylene) diethanol (1,3-diol) and diisopropyl adipate required 2 mol% Shvo's catalyst and 12 mg Novozym 435 per mmol alcohol group in the presence of 0.5 M 2,4-dimethyl-3-pentanol as the hydrogen donor. With these conditions, chiral polyesters were obtained with peak molecular weights up to 15 kDa, an ee value up to 99% and with 1-3 % ketone end groups. Also with the structural isomer, 1,4-diol, a chiral polyester was obtained, albeit with lower molecular weight (8.3 kDa) and slightly lower ee (94%). Aliphatic secondary diols also resulted in enantio-enriched polymers but at most an ee of 46 % was obtained with molecular weights in the range of 3.3-3.7 kDa. This low ee originates from the intrinsic low enantioselectivity of Novozym 435 for this type of secondary aliphatic diols. The results presented here show that ITC can be applied to procure chiral polyesters with good molecular weight and high ee from optically inactive AA-BB type monomers.  相似文献   

7.
Aliphatic polyesters of controlled molecular weight and low molecular weight distribution were prepared via anionic ring-opening polymerization using a multifunctional star-shaped initiator. Functionalization results in star-shaped functional polyesters bearing methacrylate end groups. Novel biodegradable polyester resins were prepared by photochemical crosslinking of the functional polyesters. Three-dimensional microstructuring via UV replica molding shows the potential of this material as substrate for biomedical devices.  相似文献   

8.
With the object to synthesize polyesters by enzymatic catalysis in organic media, two directions have been investigated: (1) the condensation polymerization of linear ω-hydroxyesters and (2) the ring-opening polymerization of lactones. The commercially-available crude porcine pancreatic lipase (PPL), suspended in organic solvents, was the preferred enzyme for the reactions. In order to determine the optimal conditions for the condensation polymerization, the bifunctional methyl 6-hydroxyhexanoate was used as a model compound to study the influence of the following parameters: type of the enzymecatalyst, kind of solvent, concentration, temperature, duration, size of the reaction mixture, and stirring. Film-forming polyesters with a degree of polymerization (DP) up to about 100 were obtained from linear aliphatic hydroxyesters in n-hexane at reflux temperature (69°C). Yet concurrently with the intermolecular condensation polymerization, macrolactones were also formed by intramolecular reaction. Two aromatic hydroxyesters did not react under these conditions. For the ring-opening polymerization of lactones the reaction of ?-caprolactone with methanol as the preferred nucleophile, was studied. Polyesters with a DP of up to 35 were obtained in n-hexane at temperatures between 25 and 40°C. The degrees of polymerization of the polyesters were determined by comparative analyses of the end groups in the 1H-NMR spectra and by determination of molecular weights either by vapor phase osmometry, gel permeation chromatography, or intrinsic viscosity. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Biobased, unsaturated polyesters derived from isosorbide, maleic anhydride, and succinic acid were synthesized and characterized. The presence of maleic anhydride units in the structure of the polyesters allowed converting them into cured coatings by radical copolymerization with crosslinking agents such as 2‐hydroxyethyl methacrylate, N‐vinyl‐2‐pyrrolidinone, acrylic acid or methacrylamide. The investigated polyesters were obtained via bulk polycondensation, catalyzed by titanium(IV) n‐butoxide. 2D NMR and MALDI‐Tof‐MS spectroscopy proved that this polymerization resulted in isomerization of maleic acid units into fumaric ones and in the formation of slightly branched structures by the reaction of isosorbide (end) groups with main chain unsaturated bonds. Moreover, some double bonds proved to have reacted with the condensation by‐product water. The resulting polyesters displayed the expected correlation between variables such as molecular weight and content of unsaturated bonds and their Tg values. Since the thermal properties of the obtained polyesters were appropriate for coating applications, the polymers were crosslinked with unsaturated monomers by radical copolymerization. The crosslinking process was studied using FTIR spectroscopy and by measurements of the soluble part of the cured coatings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2885–2895, 2010  相似文献   

10.
以三氟甲烷磺酸亚锡为催化剂, 2-巯基乙醇为引发剂, 在温和条件下引发ε-己内酯的开环聚合, 得到端基为巯基的聚己内酯, 其分子量可控且分布较窄. 在此过程中, 巯基不需要保护而不会影响聚酯的结构, 当聚合温度升高时, 聚合物端基结构不发生改变, 但分子量分布变宽. 端基为巯基的聚己内酯能够通过偶合反应生成中间含二硫键的聚己内酯; 同时, 以2-羟乙基二硫化合物为引发剂合成得到分子中间含二硫键的窄分布聚己内酯, 经还原后也可得到端基为巯基的聚己内酯. 这两种方法条件温和, 效率较高, 具有良好的可控性.  相似文献   

11.
The reaction promoted by thionyl chloride and pyridine could selectively activate carboxyl groups of hydroxybenzoic acids to give polyesters of high inherent viscosities up to 3.8. Favorable conditions were studied in terms of the temperatures for the initial reaction with the acids and subsequent aging at room temperature. Copolymers of several combinations of hydroxybenzoic acids with high molecular weights were obtained in quantitative yield by carrying out the polycondensation at 80°C for 3 h. The reaction could also produce high molecular polyesters in a simpler process without the initial activation of dicarboxylic acids by adding a mixture of these monomers to the condensing agent, and a tough film- and fiberforming polymer was obtained from 4,4′-dihydroxyphenylsulfone of low nucleophilicity whose polymer of high molecular weight is difficult to obtain. The process was also successfully applied to the direct copolycondensations of hydroxybenzoic acids, aromatic dicarboxylic acids, and bisphenols to produce polyesters of ηinh up to 5.6.  相似文献   

12.
The synthesis of a poly(azine–ether) via Williamson etherification using the cesium salt of 4–hydroxyacetophenone azine and 1,10–dibromodecane was carried out in N-methyl–2–pyrrolidone. The heterogeneous reaction proceeded readily at temperatures from ambient to 150°C. Polymers of varying molecular weight with essentially alkyl bromide end groups were produced either by changing the polymerization temperature or by using an excess of the organic substrate. The thermal stability of the polymers was molecular weight dependent and those with the highest DPn exhibited monotropic nematic mesomorphism.  相似文献   

13.
Three bisphenols containing cardo perhydrocumyl cyclohexylidene group, namely; 1,1-bis(4-hydroxyphenyl)-4-perhydrocumylcyclohexane, 1,1-bis(4-hydroxy-3-methylphenyl)-4-perhydrocumylcyclohexane and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)-4-perhydrocumylcyclohexane were synthesized starting from p-cumyl phenol. Each of these bisphenols was polycondensed with both terephthaloyl chloride and isophthaloyl chloride by phase transfer-catalyzed interfacial polymerization to obtain a series of new aromatic polyesters. Inherent viscosities and number average molecular weights of polyesters were in the range 0.51-0.64 dL/g and 17390-41430?g/mol, respectively which indicated the formation of reasonably high molecular weight polymers. The detailed NMR studies revealed that axial and equatorial identity of the phenyl rings of bisphenols was retained in polyesters resulting in constitutional isomerism. Polyesters containing perhydrocumyl cyclohexylidene groups showed excellent solubility in organic solvents viz, chloroform, dichloromethane, 1,1,2,2-tetrachloroethane and tetrahydrofuran. The self-standing films of polyesters could be cast from their chloroform solution. The 10% weight loss temperatures and glass transition temperatures of polyesters were in the range 453–485?°C and 201–267?°C, respectively demonstrating their excellent thermal characteristics. The gas permeability study of polyesters was carried out for He, H2 and N2 by variable-volume method. An improvement in permeability and decrease in selectivity was observed due to symmetric methyl substituents while reverse trend was observed in case of polyesters with asymmetric methyl substituents.  相似文献   

14.
Abstract

A GPC-LALLS method was developed to measure the molecular weight distribution(MWD) of liquid crystalline aromatic polyesters(LCPs). Pentafluolophenol and chloroform(35:65% by weight) as a mixed solvent was found to maintain the stability of LCPs solutions and to yild reliable GPC-LALLS curves for LCPs at room temperature.  相似文献   

15.
Cyclodextrins (CDs) were found to initiate polymerization of lactone to give polyesters with a CD ring at the end of the polymer chain in high yields only by mixing and heating with monomer without cocatalysts or solvents. CD‐tethered polyester propagates with the formation of poly‐pseudorotaxane, which is necessary to initiate further polymerization. CDs threaded onto the polymer chain are also essential for maintaining the propagating state of the polyester. By polymerizing with CD, switching the activity of the polymerization by photoisomerization was demonstrated. This polymerization system showed specific substrate recognition, releasing the products from the active site. By using the above polymerization system, β‐CD nanospheres which initiates the oligomerization of lactone were constructed. It was found that the formation of poly‐pseudorotaxane on the nanosphere enabled further polymerization activity for lactone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4469–4481, 2009  相似文献   

16.
Polymerization of several lactones were carried out by employing Pseudomonas sp. lipase as the catalyst. The data indicate that water is consumed at the onset of polymerization and released in part during subsequent stages, leading us to propose a complex mechanism for the enzymatic polymerization of lactone. This mechanism involves both ring‐opening and linear condensation polymerization. The former was dominant at the early stage while the latter was dominant in the later stage. In addition, the reaction media showed complex influences on enzymatic polymerization. Some organic solvents increased the degree of polymerization (DP) and decreased the molecular weight distribution. A strategy to increase the molecular weight of the polymer is introduced, which led to the synthesis of a polymer with a number‐average molecular weight (Mn) of 14,500—the highest Mn of poly(ε‐caprolactone) prepared by enzyme‐catalyzed polymerization thus far—and molecular weight distribution of 1.23. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1265–1275, 1999  相似文献   

17.
Copolymers of L-lactic acid (LA) and 2-pyrone-4,6-dicarboxylic acid (PDC), a chemically stable metabolic intermediate of lignin, were prepared by dehydrated polycondensation based on stepwise oligomerization followed by post-polymerization in vacuo. When the polymerization was performed in the presence of methanesulfonic acid as a catalyst, the molecular weights of the resulting copolymers were sufficiently high. Furthermore, expansion of the polymeric surface area was found to be an important factor in facilitating dehydration and thereby producing high molecular weight polymers. PDC feed ratio significantly affected the molecular weight because of the different polymerization capability from LA. Relationship between the PDC feed ratio and the molecular weight of the resulting polyesters was for the first time demonstrated quantitatively. The obtained copolymers were characterized by 1H- and 13C-NMR, IR, and thermal analysis. The high molecular weight copolymers possessed the higher decomposition temperatures than PLLA and their fusible temperature ranges were reasonably expanded.  相似文献   

18.
New aromatic (co)polyesters containing pendant propargyloxy groups were synthesized by phase transfer‐catalyzed interfacial polycondensation of 5‐(propargyloxy)isophthaloyl chloride (P‐IPC) and various compositions of P‐IPC and isophthaloyl chloride with bisphenol A. FTIR and NMR spectroscopic data, respectively, revealed successful incorporation of pendant propargyloxy groups into (co)polyesters and formation of (co)polyesters with desired compositions. (Co)polyesters exhibited good solubility in common organic solvents such as chloroform, dichloromethane, and tetrahydrofuran and could be cast into transparent, flexible, and tough films from chloroform solution. Inherent viscosities and number average molecular weights of (co)polyesters were in the range 0.77–1.33 dL/g and 43,600–118,000 g/mol, respectively, indicating the achievement of reasonably high‐molecular weights. The 10% weight loss temperatures of (co)polyesters were in the range 390–420 °C, demonstrating their good thermal stability. (Co)polyesters exhibited Tg in the range 146–170 °C and Tg values decreased with increase in mol % incorporation of P‐IPC. The study of non‐isothermal curing by DSC indicated thermal crosslinking of (co)polyesters via propargyloxy groups. The utility of pendant propargyloxy group was demonstrated by post‐modification of the selected copolyester with 1‐(4‐azidobutyl)pyrene, 9‐(azidomethyl)anthracene, and azido‐terminated poly(ethyleneglycol) monomethyl ether via copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction. FTIR and 1H NMR spectra confirmed that click reaction was quantitative. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 588–597  相似文献   

19.
A new class of aromatic polyesters containing pyridine heterocyclic rings (PE1-15) was prepared via reactions of 4-aryl-2,6-bis(4-chlorocarbonyl phenyl) pyridines (DAC1-3) and commercial diols by high temperature solution polymerization method in o-dichlorobenzene and catalytic amount of triethylamine hydrochloride. The optimum condition of polymerization was obtained via study of a model compound prepared from reaction of 4-phenyl-2,6-bis(4-chlorocarbonylphenyl) pyridine (DAC1) and phenol. All polymers were characterized by FTIR and 1H-NMR spectroscopies, and their physical properties including solution viscosity, solubility properties, thermal stability and thermal behavior were studied. The prepared polyesters showed excellent thermal stability and good solubility in polar aprotic solvents.  相似文献   

20.
Polyarylates have previously been synthesized from acetate esters via esterolysis (loss of methyl acetate). This polycondensation can be extended to p‐substituted aromatic monomers for liquid crystal polyesters (LCPs). For AB‐type polymers, methyl p‐acetoxybenzoate and methyl 6‐acetoxynaphthoate were copolymerized to an LCP with reasonable molecular weights. Benzoate esters, methyl 4‐benzoyloxybenzoate (MBB) and methyl 6‐benzoyloxy‐2‐naphthoate (MBN), are also investigated. Several tin and antimony oxide catalysts were effective. The rate of esterolysis polymerization of MBB and MBN is slower than that of the corresponding acidolysis melt polymerization, but fast enough to give relatively high‐molecular‐weight polymers and similar thermal stability as commercial LCP prepared by acidolysis. Using these alternative benzoyloxy groups significantly reduced the color problem, because ketene loss cannot occur. Esterolysis melt polymerizations leading to AB/AABB‐type LCPs were performed using either dimethyl 2,6‐naphthalene dicarboxylate (DMND) or dimethyl terephthalate (DMT) with methyl 4‐acetoxybenzoate and phenylhydroquinone diacetate with tin and antimony catalysts. DMT‐based monomer compositions show much faster polymerization than DMND‐based compositions using antimony oxide catalyst. All these LCPs show a Tg in the 140–170 °C range as a result of the inclusion of the naphthalene and/or phenyl hydroquinone units in the polymer chain. Compositions completely off‐balanced on either side still lead to relatively high‐molecular‐weight copolyesters because either excess monomer can be removed during polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3586–3595, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号