首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The copolymerization of furan and 2-methylfuran with maleic anhydride in the presence of a radical catalyst yields equimolar, alternating copolymers in which the furan units have a 2,5-linkage (NMR and IR). The copolymerization appears to have a floor temperature of about 40°C. The furan-maleic anhydride Diels-Alder adduct polymerizes in solution in the presence of a radical catalyst at temperatures above 60°C to yield the identical copolymer as is obtained from the monomers. The adduct undergoes a retrograde reaction above 60°C to regenerate the monomers which then copolymerize through excitation of the ground state comonomer charge transfer complex.  相似文献   

2.
The copolymerization of furan with maleic anhydride in the presence of a perester or azobisiso-butyronitrile at 50 or 70°C yields an unsaturated equimolar, alternating copolymer in which the furan units have 3,4 unsaturation and 2,5 linkages. The furan–maleic anhydride Diels-Alder adduct undergoes retrograde dissociation in solution at 70°C and, in the presence of radical catalysts, yields the same unsaturated alternating copolymer as is obtained from the monomers. The adduct undergoes homopolymerization in the presence of a rapidly decomposing perester at 50°C to yield a saturated polymer having a rearranged structure containing 3-oxabicyclo[2.2.1]heptane-5,6-dicarboxylic anhydride repeating units with 2,7 linkages.  相似文献   

3.
The copolymerization of isoprene, butadiene, and other conjugated dienes with maleic anhydride was readily initiated in polar solvents by conventional free radical catalysts, including peroxides, hydroperoxides, and azobisisobutyronitrile, at high concentrations or at temperatures at which the catalyst had a half-life of 1 hr or less and the total reaction time was 0.5-1 hr. Decreasing the reaction temperature or the rate of catalyst addition resulted in increased yields of Diels-Alder adduct and decreased yields of copolymer. The molecular weight decreased as the temperature increased. Dioxane and tetrahydrofuran peroxides, obtained by the passage of oxygen or UV irradiation in air, also initiated the copolymerization. The soluble diene-maleic anhydride copolymers were equimolar and alternating, had [n] 0.1-6 (cyclohexanone) and contained 75-95% 1,4 structure according to ozonolysis, titration with IC1 and NMR. The IR spectrum of the butadiene–maleic anhydride copolymer indicated 75-95% cis-1,4, 5-20% trans-1,4 and 0-5% 1,2-vinyl unsaturation. The proposed mechanism of polymerization involves a donor-acceptor (diene-dienophile) interaction generating a ground-state charge transfer complex which is readily converted to the cyclic adduct. Under the influence of radicals the ground-state complex is transformed into an excited complex which undergoes polymerization. High concentrations of radicals are necessary to generate polymerizable excited complexes in competition with adduct formation.  相似文献   

4.
Cyclic ethers such as trioxane and 3,3-bis(chloromethyl)oxetane have been polymerized easily in the presence of maleic anhydride by the irradiation of γ-rays and ultraviolet light. The polymer formed is a homopolymer of cyclic ether. The rate of polymerization is accelerated by suitable amounts of oxygen which is required to form some active species at the initiation step. The polymerization is inhibited by the addition of a small amount of radical scavenger, thus suggesting a radical initiating mechanism. In addition, the polymerization is easily initiated by benzoyl peroxide even in vacuo at or above 50°C. Diaroyl and diacyl peroxides are also effective, and polymerization also proceeds in the presence of chloromaleic anhydride, exactly in the same manner as in maleic anhydride. On the other hand, it is well known that polymerization of these cyclic monomers rarely occurs with radical catalysts and easily with cationic catalysts in the absence of maleic anhydride. From these results, it may be concluded that the polymerization is brought about by means of a radical–cationic species.  相似文献   

5.
The solution and bulk copolymerization of dicyclopentadiene (DCP) and maleic anhydride (MAH) occurs over the temperature range 80–240°C, upon the addition of a free-radical catalyst which has a short half-life at the reaction temperature. An unsaturated 1/1 MAH/DCP copolymer, derived from the copolymerization of MAH with the norbornene double bond, followed by a Wagner-Meerwein rearrangement, is obtained in the presence of a large excess of DCP at 80° C, while a saturated 2/1 MAH/ DCP copolymer, derived from the cyclocopolymerization of the residual cyclopentene unsaturation, is obtained at higher temperatures or in the presence of excess MAH. The copolymers prepared under other conditions with intermediate MAH/DCP mole ratios contain both 1/1 and 2/1 repeating units. The copolymer obtained from bulk copolymerization above 170° C contains units derived from cyclopentadiene-MAH cyclocopolymerization as well as DCP-MAH copolymerization.  相似文献   

6.
The free-radical-induced reactions of cyclohexene oxide in the presence of maleic anhydride have been found to lead to polyether in presence of AIBN and to a mixture of polyether, ester, and maleic anhydride adduct of polyether with di-tert-butyl peroxide (DTBP), the amounts of the mixture components depending on the concentration of DTBP and the temperature. Analogous reactions in the presence of succinic anhydride lead to no polyether. The obtained polyether has no hydroxyl group. The reaction appears to consist of three different steps, radical initiation, cationic propagation, and radical termination.  相似文献   

7.
Neighboring monomer units cause significant shifts in the infrared absorption peaks attributed to cis- and trans-1,4 units in conjugated diene-acceptor monomer copolymers. Conjugated diene-maleic anhydride alternating copolymers apparently have a predominantly cis-1,4-structure, while alternating diene-SO2 copolymers have a predominantly trans-1,4 structure. Alternating copolymers of butadiene, isoprene, and pentadiene-1,3 with α-chloroacrylonitrile and methyl α-chloroacrylate, prepared in the presence of Et1.5AlCl1.5(EASC), have trans-1,4 unsaturation. Alternating copolymers of chloroprene with acrylonitrile, methyl acrylate, methyl methacrylate, α-chloroacrylonitrile, and methyl α-chloroacrylate prepared in the presence of EASC-VOCl3 have trans-1,4 configuration. The reaction between chloroprene and acrylonitrile in the presence of AlCl3 yields the cyclic Diel-Alder adduct in the dark and the alternating copolymer under ultraviolet irradiation. The equimolar, presumably alternating, copolymers of chloroprene with methyl acrylate and methyl methacrylate undergo cyclization at 205°C to a far lesser extent than theoretically calculated, to yield five and seven-membered lactones. The polymerization of chloroprene in the presence of EASC and acetonitrile yields a radical homopolymer with trans-1,4 unsaturation.  相似文献   

8.
Isocyanides, dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates), and anhydrides such as maleic anhydride (=furan‐2,3‐dione) or citraconic anhydride (=3‐methylfuran‐2,3‐dione) react in one pot to afford novel iminospiro‐γ‐lactones in fairly good yields at room temperature (Schemes 1 and 3).  相似文献   

9.
Abstract

Alternating copolymers of maleic anhydride and 5-ethylidene-, 5-methylene-, and 5-vinylbicyclo(2.2.1)-2-heptene were synthesized and found to contain the comonomers in a 1:1 ratio. Evidence is presented which supports a bicyclic structure which incorporates maleic anhydride as part of a six- or seven-membered ring in the repeat unit.  相似文献   

10.
(E)‐ and (Z)‐5‐(bromomethylene)furan‐2(5H)‐one have been prepared starting from the commercially available adduct between furan and maleic anhydride. A bromodecarboxylation reaction is a key step in the synthesis. The reaction gives the (E)‐ or (Z)‐5‐(bromomethylene)furan‐2(5H)‐one as the major product, dependent on the method used in the bromodecarboxylation.  相似文献   

11.
Abstract

The influence of maleic anhydride (MAN) on the molecular mass of atactic polypropylene in the functionalization reaction initiated by organic peroxide was studied. It was found that under certain reaction conditions MAN takes part in the radical degradation of polypropylene after it is grafted. From the results of the study, a mechanism of degradation reaction was suggested.  相似文献   

12.
Summary The oxidative dehydrogenation of crotonaldehyde to furan and maleic anhydride was carried out over K2HPMo12O40catalyst. A positive effect of water vapor on furan formation is explained by ability of the catalyst to isomerize 2E- to 2Z-crotonaldehyde.</o:p>  相似文献   

13.
The alternating copolymerization of propylene oxide with terpene‐based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels–Alder adduct of α‐terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.  相似文献   

14.
以马来酸酐为原料催化合成富马酸二甲酯   总被引:2,自引:0,他引:2  
用马来酸酐与甲醇为原料,在浓盐酸为主的复合催化剂的作用下,经一步反应合成富马酸二甲酯.讨论了催化剂用量、酯化时间、异构时间、醇与酸酐比等因素对反应的影响.最适宜的反应条件为:n(甲醇):n(酸酐)=4:1,异构时间0.7h,酯化时间4h,催化剂用量为马来酸酐质量的3.5%.  相似文献   

15.
Abstract

The copolymerization of the cis or trans isomers of 1,3-pentadiene with maleic anhydride in the presence of a peroxide catalyst yields identical equimolar, alternating copolymers in which the pentadiene units have a cis-1, 4 configuration (IR, NMR). The copolymerization of the cis or trans isomers of 1, 3-pentadiene with acrylonitrile in the presence of ethyl aluminum sesquichloride yields identical equimolar, alternating copolymers in which the pentadiene units have a trans-1,4 configuration (IR, NMR). Although the trans isomer forms cyclic adducts with both maleic anhydride and acrylonitrile, the cis isomer does not undergo the Diels-Alder reaction with these dienophlles. The formation of identical copolymers from cis- and trans-1, 3-pentadiene is attributed to isomerization of the diene-dienophile charge transfer complex in the excited state, resulting in the generation of the same homopolymerizable exciplex from both isomers.  相似文献   

16.
In order to elucidate the reaction mechanism of both the radiation-induced and benzoyl peroxide-catalyzed polymerizations of cyclic ethers in the presence of maleic anhydride, the development of color during reaction and copolymerization of oxetane derivatives were investigated. Upon addition of a small amount of the γ-ray or ultraviolet-irradiated equimolar solution of a cyclic ether and maleic anhydride to isobutyl vinyl ether, a rapid polymerization took place, and the resulting polymer was confirmed to be a homopolymer of isobutyl vinyl ether. A heated solution of dioxane, maleic anhydride, and a small amount of benzoyl peroxide can initiate the polymerization of isobutyl vinyl ether in the same manner. The electrical conductivity of a 1:1 mixture of maleic anhydride and dioxane is increased by about a factor of ten after ultraviolet irradiation. These results indicate that some cationic species are actually formed in the system by irradiation or the decomposition of added benzoyl peroxide. The mechanism of formation of the cationic species responsible for the initiation may be explained as follows. A free radical of an ether is formed by abstraction of a hydrogen atom attached to the carbon adjacent to oxygen atom, followed by a one-electron transfer from the resulting radical to maleic anhydride, an electron acceptor, to yield the cationic species of the ether and the anion-radical of maleic anhydride, respectively. The resulting cationic species as well as the counteranion-radical are resonance-stabilized. Therefore, the present polymerization may be designated a radical-induced cationic polymerization.  相似文献   

17.
Addition of [1-methoxy-2 methyl-1-propenyl)-oxy] trimethylsilane (MTS) to unsymmetrical α,β-unsaturated cyclic anhydrides (namely, itaconic anhydride and citraconic anhydride) as well as symmetrical anhydrides (namely, maleic anhydride and 2,3-dimethylmaleic anhydride) was investigated. Itaconic anhydride isomerizes to citraconic anhydride in the presence of MTS. In the presence of Lewis acid catalysts (Yb(OTf)3/CH2Cl2), MTS adds to itaconic anhydride at room temperature in a 1,4-fashion. 1,2-Addition is the preferred pathway with both 2,3-dimethyl maleic anhydride and citraconic anhydride.  相似文献   

18.
Since the copolymers of maleic anhydride, a cyclic monomer, and vinyl ethers, such as isobutyl vinyl ether, are made of rigidly alternating monomer unit sequences, quasi "isotactic" and quasi "syndiotactic" configurations for the monomer unit diads and triads are proposed considering the relative orientation of the cyclic anhydride group and the ether side chain with respect to the copolymer backbone.  相似文献   

19.
This work focused on investigating the effect of the P/V atomic ratio in vanadyl pyrophosphate, catalyst for n‐butane oxidation to maleic anhydride, on the nature of the catalytically active phase. Structural transformations occurring on the catalyst surface were investigated by means of in situ Raman spectroscopy in a non‐reactive atmosphere, as well as by means of steady‐state and non‐steady‐state reactivity tests, in response to changes in the reaction temperature. It was found that the nature of the catalyst surface is affected by the P/V atomic ratio even in the case of small changes in this parameter. With the catalyst having P/V equal to the stoichiometric value, a surface layer made of αI‐VOPO4 developed in the temperature interval 340–400 °C in the presence of air; this catalyst gave a very low selectivity to maleic anhydride in the intermediate T range (340–400 °C). However, at 400–440 °C δ‐VOPO4 overlayers formed; at these conditions, the catalyst was moderately active but selective to maleic anhydride. With the catalyst containing a slight excess of P, the ratio offering the optimal catalytic performance, δ‐VOPO4 was the prevailing species over the entire temperature range investigated (340–440 °C). Analogies and differences between the two samples were also confirmed by reactivity tests carried out after in situ removal and reintegration of P. These facts explain why the industrial catalyst for n‐butane oxidation holds a slight excess of P; they also explain discrepancies registered in the literature about the nature of the active layer in vanadyl pyrophosphate.  相似文献   

20.
Enzymes cleaving the biopolymer adhesives of fouling organisms are attracting attention for the prevention of biofouling. We report a versatile and robust method to confine the serine protease Subtilisin A (or Subtilisin Carlsberg) to surfaces to be protected against biofouling. The approach consists of the covalent immobilization of the protease onto maleic anhydride copolymer thin film coatings. High‐swelling poly(ethylene‐alt‐maleic anhydride) (PEMA) copolymer layers permitted significantly higher enzyme loadings and activities than compact poly(octadecene‐alt‐maleic anhydride) (POMA) films. Substantial fractions of the immobilized, active enzyme layers were found to be conserved upon storage in deionized water for several hours. Ongoing studies explore the potentialities of the developed bioactive coatings to reduce the adhesion of various fouling organisms.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号