首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

2.
A new rhodamine-based fluorescent chemosensor (1) for transition metal cations was synthesized by one-step facile condensation of rhodamine B and 2-aminopyridine. Without metal cations, 1 is colorless and nonfluorescent, whereas addition of metal cations (Fe3+, Hg2+, Pb2+, and Fe2+) leads to an obvious color change to pink and an appearance of orange fluorescence.  相似文献   

3.
A benzimidazole-based optical probe having pendant carboxyl, amine, and imine groups as ionophore has been prepared for screening various metal ions. The 4-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-5-carboxylic acid (1) has been obtained in good yield and characterized by full battery of complementary physico-chemical techniques including 1H NMR, UV-Vis, fluorescence spectroscopy, and single crystal X-ray crystallography. Metal ion-binding properties of 1 have been studied using ppm level concentration of representative alkali metal (Na+, K+), alkaline earth metal (Mg2+, Ca2+), and transition metal (Zn2+, Co2+, Fe3+, Cd2+, Hg2+, Pb2+, Cu2+, Ag+) ions and the output signal was monitored via two different channels viz chromogenically and fluorogenically. Selective recognition of Hg2+ has been explored with absorption spectra whereas emission spectra of 1 display differential response for multiple cations at parts-per-million (ppm) level concentration that allow selective detection of Ca2+, Mg2+, and Na+ ions. The results have been discussed in light of selectivity, sensitivity, response time, mode of binding/interactions, and sensing properties.  相似文献   

4.
A new crown ether carrying two anthryl groups with nitrogen–sulfur donor atom was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–tetrahydofuran solution (1/1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Fe3+, Al3+, Cu2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cu2+and Hg2+cations. The presence of excess amounts of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. The ligand showed good sensitivity for Zn2+ with respect to other metal cations with linear range and detection limit of 1.4 × 10?7 to 4.1 × 10?6 M and 1.0 × 10?8 M respectively.  相似文献   

5.
A new 14-membered crown ether with nitrogen–sulfur donor atom carrying two anthryl groups was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-(chloromethyl) anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–dioxane solution (1/1) by means of absorption and emission spectrometry. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cd2+, Cu2+, Zn2+, Pb2+ and Hg2+ cations. Absorption spectra show isobestic points in the spectrophotometric titration of these cations. The presence of excess of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. Especially, the enhancement in case of the interaction of Hg2+ and Al3+ cations with the ligand was pronounced.  相似文献   

6.
2-(2′,5′-Dihydroxy-phenyl)-4(3H)-quinazolinone (DHPQ), a new fluorescent dye that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesised and used as fluorescent probe for detection of Hg2+. Mercuric ions can be detected and quantitated by measuring the fluorescent intensity decrease of the probe. The decrease of fluorescence intensity of DHPQ upon the addition of Hg2+ was attributed to the blocking of ESIPT reactions of DHPQ and quenching its fluorescence. The analytical performance characteristics of the proposed Hg2+ probe were investigated. The probe can be applied to the quantification of Hg2+ with a concentration range covering from 8.0?×?10?7 to 2.0?×?10?4?mol?L?1, with a working pH range of 5.5–6.5. It shows excellent selectivity for Hg2+ over other transition metal cations. The proposed method was testified for the Hg2+ assay in river water samples with satisfying recoveries.  相似文献   

7.
A new fluorescent probe L based on the rhodamine 6G platforms for Fe3+ has been designed and synthesised. L showed excellent selectivity and high sensitivity for Fe3+ against other metal ions such as K+, Na+, Ag+, Cu2+, Co2+, Mg2+, Cd2+, Ni2+, Zn2+, Fe2+, Hg2+, Ce3+ and Y3+ in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The distinct color change and the rapid emergence of fluorescence emission provided naked-eyes detection for Fe3+. The recognition mechanism of the probe toward Fe3+ was evaluated by Job’s plots, IR and ESI-MS. In order to further study their fluorescent properties, L + Fe3+ fluorescence lifetime was also measured. Moreover, the test strip results showed that these probes could act as a convenient and efficient Fe3+ test kit.  相似文献   

8.
A hydrophobic organic monomer GRBE with a polymerizable methacrylester moiety had been synthesized by reaction of rhodamine B‐ethanediamine with glycidyl methacrylate. A water‐soluble polymeric chemosensor poly(VP‐GRBE) had been prepared via copolymerization with a hydrophilic comonomer (vinylpyrrolidone) and GRBE, which was able to sense environmentally poisonous cations in completely aqueous media. The chemosensor was a derivative of rhodamine B, which behaved as a fluorescent and chromogenic sensor toward various heavy cations, particularly Cr3+, Fe3+, and Hg2+. Titration curves of Cr3+, Fe3+, and Hg2+ were constructed using rapid, cheap, and widely available technique of fluorescence spectroscopies. The detection limits for Cr3+, Fe3+, or Hg2+ ions were found to be 2.20 × 10?12, 2.39 × 10?12, and 1.11 × 10?12 mol/l in the same medium, respectively. Moreover, a colorimetric response from the polymeric chemosensor permitted the detection of Cr3+, Hg2+, or Fe3+ by “naked eye” because of the development of a pink or brown yellow color when Cr3+, Hg2+, or Fe3+ cations interacted with the copolymer in aqueous media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of metal cations (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ag+, Cd2+, Co2+, Fe2+, Hg2+, Mn2+, Pb2+, Zn2+ and Fe3+) on the spectroscopic properties of two dansyl (1-dimethylaminonaphthalene-5-sulfonyl) groups linked to the lower rims of a series of three, structurally related, di-ionized calix[4]arenes was investigated by means of absorption and emission spectrophotometry. Di(tetramethylammonium) salts of the di-ionized ligands, (TMA)2L1, (TMA)2L2 and (TMA)2L3, which differ in having zero, two and four tert-butyl groups, respectively, on the upper rim of the calix[4]arene scaffold were utilized for the spectrofluorimetric titration experiments in acetonitrile. On complexation by alkaline earth metal cations, both the absorption and emission spectra undergo marked red shifts and quenching of the dansyl fluorescence. These effects are weaker with alkali metal cations. Transition metal cations interact strongly with the ligands. In particular, Fe3+, Hg2+ and Pb2+ cause greater than 97% quenching of the dansyl fluorescence in the di-ionized ligands.  相似文献   

10.
The photophysical characteristics of a polymerizable 1,8‐naphthalimide dye and its copolymer with styrene have been investigated. The functional properties of both low and high molecular weight fluorophores in the presence of different metal cations have been discussed with regard to their potential application as fluorosensors for the metal cations and protons. In acetonitrile solution the monomeric 1,8‐naphthalimide enhances its fluorescence emission in the presence of metal cations (Zn2+, Fe3+, Co2+, Pb2+, Cu2+, Ni2+, and Mn2+). In aqueous media the poly(St‐co‐MD) exhibits a selective response to Fe3+ cations. The monomeric and polymeric fluorophores also exhibit a considerable increase in their fluorescence intensity at acidic pH values (pH < 6) which suggest that they could be used as ON–OFF probes in analytical devices for signaling the presence of protons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Ag+, Cd2+, Co2+, Fe2+, Hg2+, Mn2+, Pb2+, Zn2+ and Fe3+ on the spectroscopic properties of two dansyl (1-dimethylaminonaphthalene-5-sulfonyl) groups linked to the lower rims of a series of three, structurally related, di-ionized calix[4]arenes is investigated by means of absorption and emission spectrophotometry. Di(tetramethylammonium) salts of the di-ionized ligands, L, L1, and L2, which differ in having no, two and four allyl groups, respectively, on the upper rim of the calix[4]arene scaffold, are utilized for the spectrofluorimetric titration experiments in MeCN. On complexation by alkaline earth metal cations, the emission spectra undergo marked red shifts and quenching of the dansyl fluorescence. These effects are weaker with alkali metal cations. Transition metal cations and Pb2+ interact strongly with the ligands. In particular, Fe3+, Hg2+ and Pb2+ cause greater than 99% quenching of the dansyl fluorescence.  相似文献   

12.
The design and synthesis of switchable molecular tweezers based on a luminescent terpy(Pt‐salphen)2 ( 1 ; terpy=terpyridine) complex is reported. Upon metal coordination, the tweezers can switch from an open “W”‐shaped conformation to a closed “U”‐shaped form that is adapted for selective recognition of cations. Closing of the tweezers by metal coordination (M=Zn2+, Cu2+, Pb2+, Fe2+, Hg2+) was monitored by 1H NMR and/or UV/Vis titrations. During the titration, exclusive formation of the 1:1 complex [M( 1 )] was observed, without appearance of an intermediate 1:2 complex [M( 1 )2]. The crystallographic structure of the 1:1 complex was obtained with Pb2+ and showed a distorted helical structure. Selective intercalation of Hg2+ cations by the closed “U” form was observed. The tweezers were reopened by selective metal decoordination of the terpyridine ligand by using tris(2‐aminoethyl)amine (tren) as a competitive ligand without modification of the Pt–salphen complex. Detailed photophysical studies were performed on the open and closed tweezers. Structured emission was observed in the open form from the Pt–salphen moieties, with a high quantum yield and a long lifetime. The emission is slightly modified upon closing with 1 equivalent of Zn2+ or Hg2+, whereas a dramatic quenching was obtained upon intercalation of additional Hg2+.  相似文献   

13.
A new chelating resin containing bis[2-(2-benzothiazolylthioethyl)sulfoxide] was synthesized using chloromethylated polystyrene as material and characterized by elemental analysis and infrared spectra. The adsorption capacities of the newly formed resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were investigated over the pH range 1.0-6.0. The resin exhibited no affinity for alkali or alkaline earth metal ions. The maximum adsorption capacities of the resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were 1.49, 0.96, 0.58, 0.11, 0.37, 0, 0.24, 0.36 and 0.25 mmol g−1, respectively. In column operation it had been observed that Hg2+ and Ag+ in trace quantity could be separated from different binary mixtures and Hg2+ could be effectively removed from industrial wastewater and the natural water spiked with Hg2+ at usual pH.  相似文献   

14.
A novel organic–inorganic silica‐based fluorescent probe was designed, synthesized and characterized by different techniques such as XRD, BET, TGA, and FT‐IR. The fluorescence properties of the probe were studied in the presence of a variety of metal‐ions in water. The results revealed that various metal‐ions negligibly vary the emission intensity of the probe except for Hg2+, which quenched the intensity dramatically. The selectivity of the probe toward Hg2+ ion was further investigated in the presence of common competing metal‐ions and the results demonstrated the high selectivity of the probe toward Hg2+ ion. The fluorescence emission of the probe was also studied as a function of the concentration of Hg2+ ion. A nanomolar limit of detection was estimated for Hg2+, indicating a high sensitivity. Furthermore, the probe showed INHIBIT‐type logic behavior with Hg2+ and H+ as inputs. Also, the optimum pH range was studied in addition to reversibility and real world applicability of the probe.  相似文献   

15.
Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz 〈c,e〉 〈1,2〉 oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10−6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced Jaggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.  相似文献   

16.
The inclusion complex of 2-hydroxy-1-naphthoic acid (2H1NA) with β-cyclodextrin (β-CD) has been investigated using UV-visible and fluorescence spectral techniques in liquid states, FTIR, NMR, XRD and SEM techniques in solid state, molecular docking techniques in virtual states. The binding constants of for the formation of 1:1 2H1NA:β-CD inclusion complex is estimated by UV-visible and fluorescence spectral techniques. The chemosensory power of 2H1NA:β-CD complex was investigated thoroughly for various metal cations and we found the emission of complex showed a drastic increase in the intensity for Ag+. Competition experiments of 2H1NA:β-CD complex with Ag+ in presence of other metal ions (Na+, K+, Hg+, Al2+, Ca2+, Ba2+, Cd2+, Co2+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, Sn2+, Ti2+, Zn2+, Cr3+, Fe3+) showed that no significant variation was found in the fluoresce intensity of 2H1NA:β-CD complex upon adding all other cations. The linearity range, LOD and LOQ are determined from the selectivity and sensitivity studies for Ag+. Our result suggests that the 2H1NA:β-CD inclusion complex would be promising material for developing solid state sensory device for sensing Ag+.  相似文献   

17.
A practical, two‐step synthesis of novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 has been reported. The strategy employed for the synthesis of the desired molecules involved Duff formylation of benzo‐15‐crown‐5 to get 4‐formyl benzo‐15‐crown‐5 followed by subsequent reactions with substituted indoles in trifluoroacetic acid to yield novel 4‐(substituted bis‐indolyl)methyl)benzo‐15‐crown‐5 in moderate to good yield. One of the reported novel molecule tested for the complexation behavior with various metal cations, such as Li+, Na+, K+, Mg2+ Ca2+, Al3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Ba2+, Hg2+, and Pb2+, showed a visual colorimetric probe for the detection of mercury cations (Hg2+) in an aqueous medium.  相似文献   

18.
A novel diazaperinone 12H-pyrazino[2′,3′:3,4]pyrrolo[1,2-a]perimidin-12-one has been successfully synthesized through a one-step condensation. Single crystal X-ray analysis shows that the product is of planar structure with strong π?π interactions and H-bonding. Interestingly, the 12H-pyrazino[2′,3′:3,4]pyrrolo[1,2-a]perimidin-12-one can recognize three different metal cations Cu2+, Ag+ and Hg2+ via naked eye visualization, and shows turn-on fluorescence for Fe3+ and Ag+ among the 22 metal cations.  相似文献   

19.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

20.
A new phenothiazine-based sensor PHE-Ad for monitoring Hg2+ has been designed and synthesized based on the intramolecular charge transfer (ICT) mechanism. The probes were characterized by FTIR, 1H NMR, and HRMS, and their optical properties were detected by UV and FL. It's showed the probes detection of Hg2+ compared to other metal ions (Mg2+, Cu2+, Hg2+, Ag+, Co2+, Cr3+, Al3+, Ni2+, Zn2+, Ca2+, Fe3+, Fe2+, K+, Na+, and Cd2+) based on the test results. Besides, the detection limits were determined to be 2.12 × 10−8 M through the standard curve plot. In addition, sensor PHE-Ad shows high selectivity and sensitivity for Hg2+ with a fast response in a suitable pH range. Furthermore, taking into account its good “turn-on” fluorescent sensing behavior and low cell cytotoxicity, PHE-Ad was successfully applied to detect and image Hg2+ in real water samples and living cells, which shows great potentials for application in environmental and biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号