首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One‐ and two‐dimensional coordination polymers composed of a structurally flexible, tetradentate diisopyrazole ligand and copper(I) halides were synthesized as crystalline solids. Complexation with copper(I) chloride or bromide resulted in the formation of infinite coordination chains through connecting each diisopyrazole ligand with two copper(I) ions in a trigonal planar coordination geometry. Contrarily, the combination of a diisopyrazole ligand and copper(I) iodide gave a two‐dimensional coordination network comprising Cu4I4 units with stair‐step type geometry and diisopyrazoles that acted as both tetradentate and bidentate bridging ligands. All the coordination polymers exhibited visible photo‐emission upon UV irradiation, and the Cu4I4 complex showed thermochromic behavior.  相似文献   

2.
A spectroscopic investigation of the products formed in the reaction of emeraldine base (EB-PANI) with copper(II) ions in dimethylacetamide (DMA) is presented. It is well known that metal cations can dope emeraldine base polyaniline (EB-PANI) through a pseudo-protonation reaction. Resonance Raman, UV–vis-NIR, and EPR data, obtained for Cu2+/EB-PANI solutions prepared using CuCl2·2 H2O, Cu(NO3)2· 3 H2O or Cu(CH3COO)2·H2O as Cu2+ sources, showed that the species formed in reactions of EB-PANI and Cu2+ ions are dependent on the anions of the copper salt employed. EPR spectra pointed out that the environments of Cu2+ ions with acetate, chloride or nitrate as anions in DMA solution are distinct. Resonance Raman and UV–vis-NIR data demonstrated that the main reactions are the oxidation of EB-PANI to pernigraniline base (PB-PANI) and doping of EB-PANI to ES-PANI (emeraldine salt) when a direct coordination of Cu2+ ions to PANI exists. With nitrate as very weak coordinating anion, ES-PANI is formed preferentially. When copper chloride is used, both oxidation and doping of EB-PANI are verified. Conversely with acetate, the dimeric cage structure of this copper salt is preserved in solution, and oxidation of EB-PANI to PB-PANI is the only observed reaction. These results demonstrate the possibility of modulating the products of reaction between Cu2+ ions and EB-PANI in DMA solution by changing the counter ion of the Cu2+ source.  相似文献   

3.
Two novel copper(I) complexes with Cu‐O bonds, [Cu2L2(PPh3)2](BF4)2 ( 1 ) and [Cu(L)(dppeo)](BF4) ( 2 ) ( L = 6‐(4‐diethylmethylphosphonatephenyl)‐2,2′‐bipyridine, dppeo = bis(diphenylphosphino)ethane monoxide), have been prepared and their structures characterized. In the binuclear complex 1 , the ligand L serves as tridentate donor with the N, N′ and O as coordination atoms, and the two CuI atoms are bridged through both P = O donor atoms in different ligand L with a triphenylphosphine molecule as auxiliary ligand. While in mononuclear complex 2 , both ligands L and dppeo behave as bidentate with NN from L and PO from dppeo chelating to CuI atom.  相似文献   

4.
The tridentate Schiff base H2L was synthesized by the condensation of equimolar amount of 1-amino-2-propanol and salicylaldehyde. The reaction of H2L with an equimolar amount of Cu(CH3COO)2·H2O in methanol leads to the formation of the tetranuclear Cu4L4, 1. However, reaction of equimolar amount of H2L, copper(II) acetate, and 2,4,6-trimethylaniline in methanol forms a mixture of products which includes a discrete mononuclear complex Cu(L′)2, 2m (where HL′ is a bidentate ligand), in addition to the tetranuclear Cu4L4 species, 2c. In both tetranuclear cubane species, the tridentate H2L is both a chelating and a bridging ligand, after deprotonation of the enolic and the phenolic OH. The copper(II) centers are five-coordinate with a [N, O4] donor set from the ligands. The coordination geometry about each copper is distorted square pyramidal with one nitrogen and two oxygen from one ligand and two oxygen from adjacent ligands in the next unit of the cubane. In mononuclear 2m, the ligand is bidentate and the coordination geometry around copper(II) is square planar. The absorption spectra strongly suggest that tetranuclear 1 interacts with CT-DNA.  相似文献   

5.
One ONNO-donor tetradentate Schiff base ligand LH2 was derived from the condensation of salicylaldehyde and 1,3-diaminopropane and reacted with Cu(NO3)2·6H2O and NaNCO to yield one trinuclear complex with molecular formula [Cu3L2(µ1,1-NCO)2]. The synthesized complex was characterized by IR, UV–vis spectroscopy, and electrochemical analysis. Single-crystal X-ray diffraction study explores that the two terminal copper atoms adopt square pyramidal geometry, whereas the central copper atom situated at the inversion center is surrounded by four phenoxo oxygens and two end-on cyanato anions to adopt an octahedral geometry. The ONNO-tetradentate Schiff base ligand coordinates with the copper(II) ion via two oxygen atoms of the phenoxo-group and two nitrogen atoms from the imine moiety. A theoretical density functional theory (DFT) calculation was also carried out to supplement the experimental results. All the DFT calculations were done in gas phase.  相似文献   

6.
The crystal and molecular structure of [Cu(nif)2(4-PM)2]·CH3OH (1) and [Cu(2-Clbz)2(4-PM)2(H2O)] (2), (where nif = niflumate anion, 2-Clbz = 2-chlorobenzoate anion and 4-PM is the 4-pyridylmethanol), have been determinated by X-ray crystallography. The Cu2+ cation in (1), is coordinated by two pairs of oxygen atoms from asymmetric bidentate niflumate anions and by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands in trans position forming an extremely elongated bipyramid. The Cu2+ cation in (2), is coordinated by a pair of oxygen atoms from monodentate 2-chlorobenzoate anions, further by a pair of pyridine nitrogen atoms from monodentate 4-pyridylmethanol ligands and finally by a water oxygen atom forming a tetragonal-pyramidal coordination polyhedron. The molecules of both complexes in crystal structures are linked by O-H…O hydrogen bonds, which created a three-dimensional hydrogen-bonding networks. The Π-Π stacking interactions are also observed in crystal structures of complex 2. The spectral properties (IR and electronic spectra) of both complexes were also investigated.  相似文献   

7.
A new crystal structure of the dichloro(L-histidine)copper(II) half-hydrate is reported. In this complex, histidine acts as a bidentate ligand to the copper(II) cation. The coordination sphere of the copper cation is created by the carboxyl oxygen and the amine nitrogen from main chain group of histidine. Two additional chloride anions complete the square coordination of the central Cu+2 cation. In the crystal, the copper cations are additionally surrounded by two chloride anions from neighboring complex molecules, which are located in the distant axial position and fill up the stretched octahedral coordination sphere Cu+2. In the presented complex, the histidine molecule exists as a zwitter ion with an unprotonated negatively charged carboxyl group and with double protonated positively charged imidazole ring. Crystallographic study was supported by IR measurements confirming the presence of water in the crystal structure.  相似文献   

8.
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds.  相似文献   

9.
合成并通过单晶衍射、元素分析及红外光谱表征了配合物[Ag2(HL)(NO32]n1)的结构(HL为3-乙基-2-乙酰吡嗪缩4-苯基氨基脲)。单晶衍射结果表明,配合物1中,HL作为中性四齿配体连接2个Ag(I)中心,其中一个Ag(I)中心与HL配体中的ON2供体(羰基O,亚胺N和吡嗪N1原子)和2个单齿硝酸根配位,构成扭曲的四方锥配位构型;而另一个Ag(I)离子与1个单齿硝酸根,1个双齿硝酸根和HL配体中的吡嗪N4原子配位,形成扭曲平面正方形配位构型。另外,相邻的Ag(I)离子通过桥联的硝酸根离子相互连接形成二维层状结构;此外,配合物1与DNA的相互作用强于配体。  相似文献   

10.
A complex of Cu(II) chloride with 2-amino-5-ethyl-1,3,4-thiadiazole (AET) was prepared, and its structure was studied by IR spectroscopy and single crystal X-ray diffraction. The complex has the composition CuCl2(AET)4. The coordination sphere of the copper atom includes four molecules of the heterocyclic ligand coordinated via N atoms of thiadiazole rings and one of Cl? anions; the second Cl? anion is in the outer sphere.  相似文献   

11.
Reaction of copper(II) cyanate with pyrazine leads to the formation of [Cu(NCO)2(pyrazine)]n ( 1 ), in which the Cu2+ cations are coordinated by two nitrogen atoms of the pyrazine ligands, as well as by four nitrogen atoms of the cyanate anions within a slightly distorted octahedral coordination. In the crystal structure the Cu2+ cations are connected by the pyrazine ligands into chains which are further linked by the cyanate anions through asymmetric μ‐1,1‐NCO coordination into layers. On heating compound 1 transforms quantitatively to copper(II) cyanate which decompose to elemental copper on further heating. No ligand deficent intermediates are observed. Magnetic measurements reval an antiferromagnetic ordering at lower temperatures mediated by the π‐system of the aromatic pyrazine ligand as well as net ferromagnetic interactions mediated by the μ‐1,1‐NCO bridging cyanato anions. A search in the Cambridge Crystal Structure Database shows that the terminal coordination mode in cyanato complexes as well as their azido and thiocyanato analogs is obviously energetically favored. In addition, a comparison of their symmetric and asymmetric end‐on (μ‐1,1) as well as end‐to‐end (μ‐1,3) bridging modes reveal interesting correlations.  相似文献   

12.
《Polyhedron》1999,18(26):3401-3406
Four copper(II) complexes of bis(dialkyldithiocarbamate) [Cd(R2dtc)2] (R=Me, Et, Pr, i-Pr; dtc=dithiocarbamate) have been prepared and characterized by elemental analysis, IR and ESR spectra studies. Their equilibrium constants (K), determined by a UV–vis spectrometry in EtOH, were influenced by the alkyl groups in the following order: i-Pr>n-Pr≈Et>Me. The single crystal structures of complex [Cu2(R2dtc)4] have been determined using X-ray diffraction methods. The compounds [Cu2(Et2dtc)4] and [Cu2(Pr2dtc)4] are built of centrosymmetric neutral dimeric [Cu2(R2dtc)4] entities. The copper atom lies in a distorted square–pyramidal environment. The four equatorial donors are two bidentate chelate sulfur atoms from two dtc ligands. One of the sulfur atoms from the third dtc ligand acts as a bridging ligand occupying the apical position of the symmetry-related copper atom in the dimer structure, which is viewed as two edge-sharing distorted square–pyramids. The structure of [Cu2(i-Pr2dtc)4] is square planar with an exactly planar CuS4 unit and nearly planar NCS2 moieties. The Cu–S distances shows small decreases along the series n-Pr>Et>i-Pr, the biggest change being for the diisopropyl complex. The alkyl substituents at the nitrogen atom affect their coordination number and Cu⋯Cu distance. In the solid, [Cu2(n-Pr2dtc)4] has the shortest Cu⋯Cu distance and [Cu(i-Pr2dtc)2] has the longest one.  相似文献   

13.
Novel copper(II) X-salicylate complexes with N,N-diethylnicotinamide (dena) of the formula [Cu(RCOO)2(dena)2(H2O)2] (RCOO = 3-methylsalicylate anion (3-Mesal, 1), 4-methylsalicylate anion (4-Mesal, 2), 5-methylsalicylate anion (5-Mesal, 3), 5-methoxysalicylate anion (5-MeOsal, 4) or 4-methoxysalicylate anion (4-MeOsal, 5)), and complex [Cu(3-MeOsal)2(dena)2(H2O)2]∙2H2O (3-MeOsal = 3-methoxysalicylate anion (6)) have been prepared in the crystalline forms and characterized by spectroscopic methods (IR, Vis–UV, EPR). All the compounds according to their composition (15) seem to possess octahedral copper(II) stereochemistry. The complex 1 has been prepared in two different forms. X-ray analyses of the complexes 1, 4, and 5 were carried out and they featured a tetragonal-bipyramidal geometry around the copper atoms. The tetragonal planes are created by X-salicylate anions bonded to the copper(II) atoms via unidentate carboxylate oxygen atoms and the pyridine ring nitrogen atoms of the neutral ligand N,N-diethylnicotinamide, while in axial positions are water molecules. The two forms of complex 1 present conformation polymorphs and supramolecular isomers.  相似文献   

14.
The structures of [Cu(2-Brbz)2(4PM)2(H2O)] (1) and [Cu(2-Brbz)2(NIA)2] · 2H2O 2 [where 2-Brbz is the 2-bromobenzoate anion, 4-PM is the 4-pyridylmethanol and NIA is nicotinamide] have been determined by X-ray and characterized by EPR spectroscopy. The Cu2+ cation in 1 is coordinated by a pair of oxygens from monodentate 2-bromobenzoate anions by a pair of pyridine nitrogens from monodentate 4-pyridylmethanol ligands and finally by a water forming a tetragonal-pyramidal coordination polyhedron. The Cu2+ cation in 2 is coordinated by two pairs of oxygens from the asymmetric bidentate 2-bromobenzoate anions and by a pair of pyridine nitrogen atoms from the monodentate nicotinamide in trans positions, forming an extremely elongated bipyramid. The molecules of both complexes are linked by O–H ··· O, C–H ··· O and for 2 by N–H ··· O hydrogen bonds, which create three-dimensional hydrogen-bonding networks. EPR spectra of 1 and 2 are in agreement with X-ray data. Nicotinamide as well as 4-pyridylmethanol are suitable ligands for construction of hydrogen bonding coordination polymers.  相似文献   

15.
The crystal structures of [Tl(tsac)] ( 1 ) and [Tl(tsac)(ophen)] ( 2 ) (tsac = anion of thiosaccharin; ophen = 1, 10 phenanthroline) have been determined at 116 K by single crystal X‐ray diffractometry. Complex 1 crystallizes in the monoclinic space group P21/a with Z = 4 and complex 2 in the monoclinic space group C2/c with Z = 8.In both complexes TI is coordinated to a thiosaccharinate anion through its sulphur and nitrogen atoms. A distorted eight fold coordination sphere around the cation in complex 1 is completed with two other longer Tl‐S bonds and four Tl···O contacts with five symmetry related neighbouring thiosaccharinate anions. A phenanthroline molecule acting as a bidentate ligand through its nitrogen atoms completes a four‐fold coordination around the metal atom in complex 2 . The infrared spectra of both complexes were also recorded and their most important features discussed on the basis of its structural peculiarities.  相似文献   

16.
《Polyhedron》1999,18(8-9):1163-1169
The coordination of Cu(II) to the Keggin type anions α-undecatungstophosphocuprate(II) and α-undecatungstoborocuprate(II) was investigated in different environments by EPR and electronic spectroscopy. This study has shown that the coordination geometry around Cu(II) in the tetrabutylammonium (TBA) salts, (TBA)4Hx[XW11CuO39], with X=P or B, is square pyramidal, with copper bound to the five oxygen donor atoms of the polyoxometalate, whereas for the [XW11Cu(H2O)O39]n anion, on the corresponding potassium salt, a tetragonally elongated pseudo-octahedral geometry was found. For the potassium salts, in aqueous solution, six-coordinated copper is the only form found. For the TBA salts, in nonaqueous solvents, we can observe either the presence of only one form (the six-coordinated Cu(II) species, with a solvent molecule bound to copper), or of two forms: the solvent coordinated copper anions and the five-coordinated copper [XW11CuO39]n anions.  相似文献   

17.
In the title compound, [CuCl(C6H6N4)(H2O)][Cu(C4H5NO4)Cl]·H2O, the CuII atom in the cation is coordinated by one Cl ion, two N atoms of the 2,2′‐biimidazole ligand and one aqua ligand. Within the anion, the CuII atom is bonded to one Cl ion, and one N and two O atoms of the imino­diacetate ligand. Neighbouring cations and anions are connected to each other by Cu·Cl semi‐coordination bonds of 2.830 (12) and 3.071 (12) Å, forming a Cu2Cl2 rectangular unit. The dinuclear units further link into a polymeric chain along the a axis through Cu·Oaqua interactions of 2.725 (3) Å. Including the long coordination bonds, the geometries around the Cu atoms in the cation and anion are square‐pyramidal and distorted octahedral, respectively.  相似文献   

18.
Two novel metal‐organic coordination complexes [Cu(3‐bpfp)(pht)(H2O)] · 2H2O ( 1 ) and [Cu3(4‐bpfp)(pht)2(OH)2] · 2H2O ( 2 ) were hydrothermally synthesized by self‐assembly of phthalic acid (H2pht), flexible bis(pyridylformyl)piperazine ligands [3‐bpfp = bis(3‐pyridylformyl)piperazine, 4‐bpfp = bis(4‐pyridylformyl)piperazine], and copper chloride. Single crystal X‐ray diffraction analysis revealed that the adjacent CuII ions are connected by pht showing different coordination modes [a bis(monodentate) coordination mode for 1 and a monodentate‐bidentate coordination mode for 2 ] to form 1D Cu‐pht‐Cu chains in 1 and 2D Cu‐pht layers in 2 . In compound 1 , a twofold interpenetrated CdSO4‐like topology is formed by connection of 3‐bpfp. Using the isomeric ligand 4‐bpfp instead of 3‐bpfp resulted in the formation of 2 , which displays a novel 3, 4, 4, 4‐connected tetranodal 3D coordination polymeric framework. The ligand 3‐bpfp adopts a μ2‐bridging coordination mode in 1 (by ligation of the pyridyl nitrogen atoms), whereas the ligand 4‐bpfp adopts a μ4‐bridging coordination mode (by ligation of pyridyl nitrogen and carbonyl oxygen atoms) in 2 . Moreover, the electrochemical properties of carbon paste electrodes bulk modified with the two copper complexes were studied.  相似文献   

19.
《Tetrahedron: Asymmetry》1999,10(2):281-295
The ligand piperazine-1,4-bis[4-(N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-propyl)-N-(1-methyl-1H-imidazol-2-ylmethyl)aminobutyl] (PHI) was synthesized by a multistep procedure starting from Nτ-methyl-l-histidine, piperazine-1,4-bis[4-(4-oxo-4-butanoic) acid] and 1-methyl-1H-imidazole-2-carbaldehyde. This ligand has two potential tridentate, aminobis(imidazole) (A sites), and one bidentate, piperazine (B site), binding sites for metal ions and was employed for the synthesis of the binuclear [Cu2PHI]4+ and the trinuclear [Cu3PHI]6+ complexes, the latter of which features a coordination environment mimicking that present in the trinuclear clusters of the blue copper oxidases. For comparison purposes, the mononucleating ligand l-Nα-(1-methyl-1H-imidazol-2-ylmethyl)-Nτ-methylhistidine methyl ester (IH) and its complex [CuIH]2+ have been also prepared. These copper(II) model complexes are the first reported which are directly derived from chiral l-histidine residues. A detailed analysis of the UV–vis, CD and EPR spectra of the complexes has established that the Cu(II) centers bound to PHI A sites are square-pyramidal in solution, with the amino and one imidazole donor in the equatorial plane and the additional imidazole group bound axially. This arrangement implies the adoption of an unusual conformation of λ chirality by the l-histidine residue and is determined by the attempts to minimize steric interference between the substituents at the tertiary amine donor group and the histidine residue bearing the C-α substituent acetoxymethylene group of the bound PHI ligand. For the less sterically crowded secondary amine group of the bound IH ligand, the histidine C-α substituent can occupy a pseudoaxial position, so that in the complex [CuIH]2+ the `normal' arrangement with three equatorial nitrogen donors and δ chirality in the l-histidine chelate ring occurs.  相似文献   

20.
分别采用水热反应法和溶液培养法, 合成了两个结构新颖的铜配合物[Cu3(Ipz)3] (Ipz=4-碘吡唑) (1), [Cu(SO4)(Ipz)4]·2H2O·CH3OH (2)。通过元素分析、红外光谱、紫外光谱和X-ray单晶衍射方法对其结构进行了表征。晶体结构表明, 配合物1属于正交晶系, Pnma空间群;配合物2属于三斜晶系, P1空间群。配合物1和2的中心金属铜原子的化合价分别是+1和+2价, 金属的配位环境以及配体的配位模式也完全不同。配合物1中金属铜为二配位, 与配体相互连接形成一个闭合的九元环结构;配合物2中金属铜为六配位, 通过配位的硫酸根分子连接形成一条无限的一维链状结构。此外, 对这2个配合物进行了量化计算, 同时还对配合物1进行了荧光光谱分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号