首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N,N‐Dimethylacrylamide (DMA) and N,N‐diethylacrylamide (DEA) were polymerized with various Grignard reagents in tetrahydrofuran at −78 °C in the presence of diethylzinc (Et2Zn). Highly isotactic poly(DEA) was produced in quantitative yield with tert‐butylmagnesium bromide and Et2Zn, whereas atactic poly(DEA) was generated in the absence of Et2Zn. No stereospecific polymerization of DMA proceeded with Grignard reagent in the presence of Et2Zn. The highly isotactic poly(DEA) obtained was soluble in water and showed the characteristic coil–globule transition phenomenon. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4677–4685, 2000  相似文献   

2.
With Ph2CHK as an initiator, the anionic polymerization of N‐propyl‐N‐(3‐triisopropoxysilylpropyl)acrylamide ( 4 ) and N‐propyl‐N‐(3‐triethoxysilylpropyl)acryl‐amide generated polymers with predicted molecular weights and narrow molecular weight distributions (MWDs) in the presence of Et2Zn or Et3B; however, the resulting polymers obtained in the absence of such Lewis acids had very broad MWDs. The results were ascribed to the coordination of the propagating anionic end to a relatively weak Lewis acid, in which the activity of the end anion was appropriately controlled for moderate polymerization without side reactions. A well‐defined diblock copolymer of 4 and N,N‐diethylacrylamide was also prepared with the binary initiating system of Ph2CHK and Et2Zn, whereas no such block copolymer was prepared by polymerization initiated with 1,1‐diphenyl‐3‐methylpentyllithium, as the propagating anion together with the lithium ion reacted with alkoxysilyl side groups on the poly( 4 ) backbone to produce grafted polymers with high molecular weights. The hydrolysis of the alkoxysilyl side groups of poly( 4 ) in acidic water yielded an insoluble gel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2754‐2764, 2005  相似文献   

3.
Poly[2‐(3‐nitrocarbazolyl)ethyl methacrylate] (poly(NCzMA)) with controlled molecular weight and narrow molecular weight distribution was successfully synthesized using (methyl methacryloyl)potassium (MMA) as a weak initiator in the presence of diethylzinc (Et2Zn) in THF at –78°C. Et2Zn acted both as an additive for the coordination with enolate anion and nitro group and as a scavenger to remove impurities. Block copolymers PMMA‐block‐poly(NCzMA)‐block‐PMMA and poly(NCzMA)‐block‐PS‐block‐poly(NCz‐MA), were also synthesized quantitatively (PMMA: poly(methyl methacrylate), PS: polystyrene). The results indicate that Et2Zn can be used to synthesize the polymers of solid, nitro group‐containing methacrylate monomers by anionic polymerization in THF.  相似文献   

4.
Stable potassium enolates of N,N‐diethylacetamide [α‐potassio‐N,N‐diethylacetamide ( 1 )], N,N‐diethylpropionamide [α‐potassio‐N,N‐diethylpropionamide ( 2 )], and N,N‐diethylisobutyramide [α‐potassio‐N,N‐diethylisobutyramide ( 3 )] were prepared by the proton abstraction of the corresponding N,N‐diethylamides with diphenylmethylpotassium (Ph2CHK) or potassium naphthalenide in THF. The relative nucleophilicity of 1 – 3 was estimated to be in the order of 1 < 3 < 2 from the results of the alkylation reaction with methyl iodide. N,N‐diethylacetamide transferred its α‐proton to 2 quantitatively in THF at 0 °C, whereas no reaction occurred between N,N‐diethylisobutyramide and 2 ; this indicated the relative basicity to be 1 < 2 ~ 3 . Anionic polymerizations of N,N‐diethylacrylamide (DEA) and methyl methacrylate were quantitatively initiated with 2 in THF at ?78 °C, whereas the initiation efficiencies of 2 for styrene and 2‐vinylpyridine were about 2 and 67%, respectively. The initiation of DEA with 1 – 3 at ?78 or 0 °C in THF gave poly (DEA)s having broad molecular weight distributions (MWDs; Mw/Mn = 2) and ill‐controlled molecular weights. In contrast, poly(DEA)s of narrow MWDs (Mw/Mn < 1.2) and predicted Mn's were obtained with 2 in the presence of diethylzinc (Et2Zn) at ?78 °C, whereas the initiations with 1 /Et2Zn and 3 /Et2Zn at ?78 °C resulted in poor control of the molecular weights. At the higher temperature of 0 °C, all the binary initiator systems ( 1 – 3 /Et2Zn) induced controlled polymerizations of DEA in terms of the conversion, molecular weight, and MWD. The poly(DEA)s produced with 1 – 3 /Et2Zn at 0 °C showed mr‐rich configurations (mr = 76–89%), as observed for the poly(DEA) generated with Ph2CHK/Et2Zn. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1260–1271, 2007  相似文献   

5.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

6.
Anionic polymerization of α-methylene-N-methylpyrrolidone ( MMP ) was carried out in THF at −78∼0 °C with diphenylmethylpotassium (Ph2CHK) and with diphenylmethyllithium (Ph2CHLi) in the presence of Lewis acidic diethylzinc (Et2Zn). Poly( MMP )s possessing predicted molecular weights based on the molar ratios between monomer and initiators and narrow molecular weight distributions (Mw/Mn < 1.1) were obtained in quantitative yields. It was demonstrated that the propagating chain end of poly( MMP ) was stable at −30 °C to form the polymers with well-defined chain structures. From the polymerizations at the various temperatures ranging from −50 to −30 °C, the apparent rate constant and the activation energy of the polymerization were estimated as follows: ln k = −6.93 × 103/T + 25.7 and 57 ± 5 kJ mol−1, respectively.  相似文献   

7.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

8.
Several batches of poly-N,N-diethylacrylamide were synthesized by anionic and by group transfer polymerization (GTP). A radical poly-N,N-diethylacrylamide prepared from the same monomer was also included in the comparison. According to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) both types of living polymerization resulted in narrow molecular weight distributions with Mw/Mn values below 1.5. Average molecular weights (Mn) between 888 and 4678 g/mol were calculated in these cases. The radical polymer had an average molecular weight (Mn) of approximately 130,000 g/mol. The dry anionic and GTP polymers were investigated by differential scanning calorimetry (DSC) and x-ray diffraction spectrometry. Evidence for partial crystallinity in the solid state was found. The conformation of all polymers was examined by high resolution (600 MHz) NMR. According to these measurements, 75% of the ? CHR? groups of the anionic poly-N,N-diethylacrylamide were located in an isotactic triade. The remaining 25% had heterotactic structure, while no indication for the presence of syndiotactic protons was found. Poly-N,N-diethylacrylamide prepared by GTP, on the other hand, had mainly syndiotactic structure. The aqueous solutions of the polymers showed phase separation upon heating. Whereas the lower critical solution temperature (LCST) was approximately 30°C in the case of the poly-N,N-diethylacrylamide prepared by GTP and by radical polymerization, uncommonly high LCSTs of more than 40°C were observed for the anionic poly-N,N-diethylacrylamide. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
We report syntheses of isotactic polyacrylate and polyacrylamide via a stereospecific radical polymerization of a pendant-transformable monomer, acrylamide carrying isopropyl-substituted ureidosulfonamide ( 1 ), followed by post-polymerization modification (PPM). The study in the alcoholysis and aminolysis reactions of the model compound ( 2 ) for evaluation of the transformation ability of the electron-withdrawing pendant group on the repeating unit 1 revealed the following points: the pendant of the polymer became more reactive than that of monomer; the pendant was active enough for aminolysis reaction affording the amide compound quantitatively without additive/catalyst; the addition of a lithium triflate [Li(OTf)] and triethylamine (Et3N) was effective as for promotion of the alcoholysis reaction. Poly(methyl acrylate) (PMA) was quantitatively obtained via the radical polymerization of 1 in the presence of Li(OTf) at 60 °C and the subsequent addition of methanol along with Et3N. Thus-obtained PMA showed higher isotacticity [m=74 %] than that directly obtained via radical polymerization of methyl acrylate (MA) (m=51 %). The isotacticity was further increased as the temperature and monomer concentration were lower, and eventually m was increased up to 93 %. The aminolysis PPM after the iso-specific radical polymerization of 1 gave various isotactic polyacrylamides carrying different alkyl pendant groups, including poly(N-isopropylacrylamide) (PNIPAM).  相似文献   

10.
In the presence of Et2SO4, (S)-1-(N-phenyl-carbamoyl)-2-methylaziridine gave an oligomer with a structure of [CH2? CHCH3? N(CONHPh)]n. The oligomer has optically active isotactic configuration and narrow molecular weight distribution (DP ca. 8). The net polymerization behavior of the monomer and chemical property, such as absorptivity of Et2SO4, of the oligomer are analogous to the case of 1-(N-phenyl-carbamoyl)-aziridine. The ring opening occurs with retention of the configuration at the asymmetric carbon atom and the oligomer can be crystallized at around 90°C.  相似文献   

11.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

12.
Abstract

Organolanthanide(III) initiated polymerization of methyl methacryate gave both syndiotactic and isotactic living polymers of high molecular weight. Organolanthanide(III) initiated polymerization of alkyl acrylates also gave high molecular weight poly(alkyl acrylate)s with very narrow molecular weight distribuion in high yield. Molecular weights of the resulting polymers increased linearly with the conversion. Random and block copolymerizations of alkyl acrylates with methyl methacrylate were realized successfully. For the sake of development of the olefin polymerization catalyst, bulky substituents were introduced into Me2Si bridged Cp rings and they were used as ligands for the lanthanide complexes. Tri- and divalent lanthanide complexes with such ligands showed high activity for olefin polymerization and gave high molecular weight polyolefins.  相似文献   

13.
Well‐defined end‐functionalized polystyrene, poly(α‐methylstyrene), and polyisoprene with polymerizable aziridine groups were synthesized by the termination reactions of the anionic living polymers of styrene, α‐methylstyrene, and isoprene with 1‐[2‐(4‐chlorobutoxy)ethyl]aziridine in tetrahydrofuran at ?78 °C. The resulting polymers possessed the predicted molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.1) as well as aziridine terminal moieties. The cationic ring‐opening polymerization of the ω‐monofunctionalized polystyrene having an aziridinyl group with Et3OBF4 gave the polymacromonomer, whereas the α,ω‐difunctional polystyrene underwent crosslinking reactions to afford an insoluble gel. Crosslinking products were similarly obtained by the reaction of the α,ω‐diaziridinyl polystyrene with poly(acrylic acid)‐co‐poly(butyl acrylate). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4126–4135, 2005  相似文献   

14.
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009  相似文献   

15.
The atom transfer radical polymerization of cyclohexyl methacrylate (CHMA) is reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalytic system with ethyl 2‐bromoisobutyrate as the initiator in bulk and different solvents (25 vol %) at 40 °C. The polymerization of CHMA in bulk resulted in a controlled polymerization, although the concentration of active species was relatively elevated. The addition of a solvent was necessary to reduce the polymerization rate, which was dependent on the dipole moment. Well‐controlled polymers were obtained in toluene, diphenyl ether, and benzonitrile solutions. Poly(cyclohexyl methacrylate) as a macroinitiator was used to synthesize the poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) block copolymer, which allowed a demonstration of its living character. In addition, two difunctional initiators, 1,4‐bis(bromoisobutyryloxy) benzene and 1,2‐bis(bromoisobutyryloxy) ethane, were used to initiate the atom transfer radical polymerization of CHMA. The experimental molecular weights of the obtained polymers were very close to the theoretical ones. These, along with the relative narrow molecular weight distributions, indicated that the polymerization was living and controlled. For confirmation, two different poly(tert‐butyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) triblock copolymers were also synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 71–77, 2005  相似文献   

16.
The diad tacticity of poly(isopropyl acrylate) was measured from the β-proton absorptions of poly(isopropyl acrylate-α,β-d2) obtained with a 100 MHz NMR spectrometer, and temperature dependence of the tacticity of the polymers obtained by radical polymerization was determined. Enthalpy and entropy differences between isotactic and syndiotactic addition for poly(isopropyl acrylate) were calculated to give the following values: Δ(ΔS) = 0.7 eu; Δ(ΔH) = 0.51 kcal/mole. In the hydrolysis of poly(isopropyl acrylate-α,β-d2), it was found that the rate of hydrolysis of poly(isopropyl acrylate) was dependent on the molecular weight rather than on the tacticity. As for the rate of racemization during hydrolysis, the rate for syndiotactic polymer was much faster than that for the isotactic polymer. The exchange reaction of deuterium at α-position with hydrogen occurred in all the polymers during hydrolysis reaction.  相似文献   

17.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The cationic monomers (CNBr), obtained by quarternization of dimethylaminoethyl methacrylate with n-alkyl bromide containing varying carbon number (N = 4, 8, 12, 14, and 16) were polymerized with radical initiators in water and various organic solvents. The degree of polymerization of the resulting polymers was determined by GPC measurements on poly(methyl methacrylate) samples derived from them. The rate of polymerization of the micelle-forming monomers (N = 8, 12, 14, and 16) in water increases with increasing a chain length of alkyl group, whereas it is little dependent on N in isotropic solution in dimethylformamide. The data on the degree of polymerization for the polymers of C4Br, C8Br, and C12Br show that the polymerization of C12Br with azo initiators in water and benzene gives polymers with a very high degree of polymerization. The results obtained here suggest that highly developed or relatively rigid, aggregated structures of monomers in solution are responsible for the formation of the polymers with a very high degree of polymerization, in addition to an enhanced rate of polymerization. Also considered are the relation of the molecular weight of poly(C12Br) to the viscosity data in chloroform and methanol.  相似文献   

19.
A bifunctional initiator, ethanediyl 1,2-bis(2-isobutyl oxazolinium trifluoromethane sulfonate) was prepared and used for the ring opening polymerization of 2-isobutyl oxazoline. Polymerizations were run in CH3CN at 80 and 60°C and in sulfolane at 80°C. The molecular weight distributions of the poly(N-isovaleryl ethyleneimine)s produced, M/I ≤ 45, approached Poisson distribution.  相似文献   

20.
This work is directed to the stereospecific living radical polymerization of acrylamides such as N,N‐dimethylacrylamide and N‐isopropylacrylamide with an iron complex and a Lewis acid. DMAM was polymerized with [FeCp(CO)2]2 in conjunction with an alkyl iodide [(CH3)2C(CO2Et)I] as an initiator in the presence of Y(OTf)3 in toluene/methanol (1/1) at 60 °C to be converted almost quantitatively to the polymers with controlled molecular weights and high isotacticity (m > 80%), wherein the Fe‐complex generates radical species from a covalent C? I bond of the dormant species and the Lewis acid controls the stereochemistry of the polymerization via coordination with the amide groups of the polymer terminal and the monomer. A series of Lewis acids were also used for the iron(I)‐catalyzed DMAM polymerization, and Yb(OTf)3 and Yb(NTf2)3 proved effective in giving isotactic polymers without deteriorating the molecular weight control similar to Y(OTf)3. Furthermore, a slight enhancement of isospecificity was observed for the iron‐catalyzed system in comparison with the α,α‐Azobisisobutyronitrile‐initiated, when coupled with Y(OTf)3. Stereoblock polymerization of DMAM via a one‐pot reaction was also achieved by just adding the Y(OTf)3 methanol solution in the course of the polymerization to give atactic‐b‐isotactic poly(DMAM). A similar but slightly lower control in the molecular weight and tacticity was achieved in the polymerization of NIPAM with [FeCp(CO)2]2/Y(OTf)3. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2086–2098, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号