首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation behaviors of acridine red (AR), neutral red (NR) and rhodamine B (RhB) dye guest molecules by three kinds of supramolecular hosts, including β-cyclodextrin (β-CD), calix[4]arene tetrasulfonate (C4AS) and cucurbit[7]uril (CB[7]), have been investigated by means of fluorescence spectra in aqueous citrate buffer solution (pH 6.0). The results obtained show that the three hosts, possessing different types of cavity, lead to various complexation-induced fluorescence of dye guests, and present different binding ability and molecular selectivity. The complexation stability constants decrease in the order of NR > AR > RhB for C4AS and CB[7] hosts, while in the order of RhB > AR > NR for β-CD host. Particularly, CB[7] displays the strongest binding ability with NR (K S = 33300 M? 1), and provides the molecular selectivity of 4.8 for NR/AR pairs. Although the binding ability of C4AS for present dye guests is weaker than CB[7], but the molecular selectivity of the two hosts are nearly equivalent. β-CD shows stronger binding ability with RhB (K S = 5880 M? 1) as comparison with CB[7] and C4AS. Furthermore, the solvent effects and salt effects during the course of complexation have also been investigated.  相似文献   

2.
The teratogenicity of the pesticide nereistoxin (NTX) and its derivative thiocyclam (THI) towards aquatic life was dramatically constrained by a synthetic nanoreceptor, cucurbit[7]uril, through selective encapsulation of the pesticides (KCB[7]‐NTX of 3.24(±0.31)×106 m ?1 and KCB[7]‐THI of 7.46(±0.10)×105 m ?1), as evidenced by the rate of hatchability, morphology development, and tyrosinase activity of zebrafish larvae incubated with the pesticides (3–300 μm ) in the absence and in the presence of 300 μm cucurbit[7]uril, demonstrating the significant potential of the nanoreceptor in managing ecological pollution of these pesticides.  相似文献   

3.
The recognition properties of acyclic cucurbit[n]uril (CB[n]) congener 1 towards seven local anaesthetic drugs (2–8) are reported. Job plots constructed from 1H NMR experiments confirm the 1:1 host:guest nature of these complexes, whereas the changes in chemical shift observed upon complex formation (Δδ values) provide information about the geometry of the host–guest complexes. For complexes between host 1 and guests 25 and 8, a single geometry was preferred, whereas for guests 6 and 7 a mixture of two diastereomeric complexes was indicated. The K a values for complexes between 1 and 28 fall in the range of 103–108 M? 1 as determined by UV–vis and 1H NMR competition experiments. The results further establish that acyclic CB[n]-type receptor 1 is preorganised into the C-shape required for binding and that its aromatic o-xylylene walls endow it with a potency towards aromatic ammonium ions. The K a values reported in this paper constitute a blind data-set used in the SAMPL3 challenge aimed at testing computational methods relevant to protein√ligand systems. The work thus highlights the great potential of CB[n] receptors as model systems to promote synergy between the supramolecular and computational chemistry communities.  相似文献   

4.
We determined the relative binding constants (Krel) for guests 119 towards cucurbit[7]uril by 1H NMR competition experiments in 100 mM Na3PO4-buffered D2O. In these experiments, we use guest 11 as the reference guest because of its strong binding towards CB[7] and its advantageous spectroscopic properties (e.g. slow exchange on NMR timescale and distinct resonances for key protons). To convert the determined Krel values to absolute binding constants, we performed a direct UV–vis titration of 1 with CB[7] to determine Ka for CB[7]√1. The trends in the determined values of Krel and Ka are discussed with respect to the importance of the concentration of metal ions in the buffer, the influence of hydroxyl groups located at the portals or inside the CB[7] cavity, geometry of the guest (e.g. regioisomers), the number of guest C atoms and secondary electrostatic interactions.  相似文献   

5.
A new method in which supramolecular polymerization is promoted and controlled through self‐sorting is reported. The bifunctional monomer containing p‐phenylene and naphthalene moieties was prepared. Supramolecular polymerization is promoted by selective recognition between the p‐phenylene group and cucurbit[7]uril (CB[7]), and 2:1 complexation of the naphthalene groups with cucurbit[8]uril (CB[8]). The process can be controlled by tuning the CB[7] content. This development will enrich the field of supramolecular polymers with important advances towards the realization of molecular‐weight and structural control.  相似文献   

6.
A linear double pyridinium-terminated thread comprising a central chalcone moiety is shown to provide two independent binding sites with similar affinity for cucurbit[7]uril (CB7) macrocycles in water as judged from NMR, UV-Visible and fluorescence spectroscopies. Association results in [2] and [3]pseudorotaxanes, which are both pH and photosensitive. Switching from the neutral chalcone to the cationic flavylium form upon irradiation at 365 nm under acidic conditions provided an enhanced CB7 association (K1:1 increases from 1.2×105 M−1 to 1.5×108 M−1), limiting spontaneous on-thread cucurbituril shuttling. This co-conformational change in the [2]pseudorotaxane is reversible in the dark with kobs=4.1×10−4 s−1. Threading the flavylium moiety into CB7 leads to a dramatic increase in the fluorescence quantum yield, from 0.29 in the free axle to 0.97 in the [2]pseudorotaxane and 1.0 in the [3]pseudorotaxane.  相似文献   

7.
We describe a new strategy to control the reactivity of Se?Se bond by using supramolecular chemistry of cucurbituril. We have demonstrated that selenocystamine (SeCy) and cucurbit[6]uril (CB[6]) can form a stable supramolecular complex (Ka=5.5×106 M ?1). Before complexation, the free Se?Se bond in SeCy is rather sensitive to redox stimuli and gets disrupted quickly with addition of reductant or oxidant. However, after binding with CB[6], the Se?Se bond becomes quite inert and hardly reacts with reductant or oxidant. One advantage of this supramolecular protection is that it can be applied in a wide pH range from weakly acidic to basic. Additionally, the supramolecular complex formed by SeCy and CB[6] can be reversibly dissociated simply with addition of Ba2+.  相似文献   

8.
Inclusion of a biological photosensitizer and prototype of β-carbolines, norharmane (NHM), into the cavity of cucurbit[7]uril (CB[7]) has been investigated for the first time, by using 1H NMR and UV–visible spectroscopy, and ab initio calculations. Protonated NHM forms a very stable host–guest complex with CB[7] in aqueous solution, with a binding constant of (9.0 ± 0.5) × 104 M?1. The encapsulation of NHM into CB[7] has driven the prototropic equilibrium of NHM to protonated NHM (NHMH+) at neutral pH. A pH titration for the host–guest complex revealed a moderate shift of the acid–base equilibrium in the ground-state (from 7.2 to 7.9), which may be caused by the low polarity microenvironment of the CB[7] cavity. The CB[7] provides a binding pocket for the hydrophobic molecule, and the polar, carbonyl-lined portals offering an anchoring site for the positive charge of the cationic species NHMH+.  相似文献   

9.
A new coumarin derivative containing benzothiazole and piperazine substituents was synthesized. Preferential inclusion of the benzothiazole group, over the coumarin and piperazine groups, inside the cavity of the molecular container cucurbit[7]uril (CB7) was evidenced by using optical and NMR techniques. The binding constant of the new complex with CB7 is higher in its protonated forms (e.g., K = 2.8 × 106 M−1) than in its neutral forms, which led to an increase in the pKa value associated with protonation of the aza nitrogen on the benzothiazole ring of ca. 2.5 units. Such CB7-induced protonation disabled the photoinduced electron transfer (PET) in the included molecule, enhancing its coumarin fluorescence up to ca. 45-fold (pH 3.5, 410 nm). The results are discussed in the context of designing sensitive analytical tools for reversible monitoring of optically inactive analytes by competitive displacement experiments.  相似文献   

10.
Three lanthanide-based complexes, {Gd2(H2O)10(CB[6])2}·CB[6]·6Cl·12H2O (1), {[Gd2(H2O)8CB[6]2]·(CuCl4)·4Cl·46H2O}n (2), and {Dy2(NO3)2(H2O)10(CB[6])}·4NO3·14H2O (3) (CB[6] = cucurbit[6]uril), were prepared with cucurbit[6]uril (CB[6]). These complexes were characterized by single-crystal X-ray diffraction, elemental analysis, FT-IR spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis and magnetization measurements. Crystallographic results showed that 1 and 3 are dinuclear and crystallize in the triclinic space group Pī, whereas 2 is a 1-D zigzag supramolecular chain that crystallizes in the monoclinic system in C2/c. The results indicated that temperature has a big effect on the supramolecular assemblies and a different structure inducer also leads to the formation of different coordination polymers. Frequency dependence in the ac susceptibility signals was observed in 3.  相似文献   

11.
Complexation of yellow diaminoazobenzenes 1 and 3 inside cucurbit[7]uril (CB[7]) results in the formation of purple‐colored CB[7] ? cis‐ 1? 2 H+ and CB[7] ? cis‐ 3? 2 H+ complexes, respectively. The high binding affinity and selectivity displayed by CB[7] toward 1 and 3 pays the >10 kcal mol?1 thermodynamic cost for this isomerization. We investigated the behavior of these complexes as a function of pH and observed large pKa shifts and high pH responsiveness, which are characteristic of cucurbit[n]uril molecular containers. The remarkable yellow to purple color change was utilized in the construction of an indicator displacement assay for biologically active amines 4 – 10 . This indicator displacement assay is capable of quantifying the pseudoephedrine ( 5 ) content in Sudafed tablets over the 5–350 μM range.  相似文献   

12.
The 1:1 and 2:1 host–guest complexation of a series of 1,n-bis(isoquinolinium)alkane dications (Iq(CH2)nIq2+, n = 2, 4, 5, 6, 8, 9, 10 and 12, and Iq(p-xylene)Iq2+) by cucurbit[7]uril (CB[7]) in aqueous solution has been investigated by 1H NMR spectroscopy and ESI mass spectrometry. The site of binding of the first CB[7] is dependent on the nature of the central linker group, with encapsulation of the p-xylene group or the polymethylene chain when n = 6–10.With shorter (n = 2–5) or longer (n = 12) chains, the first CB[7] binds over an isoquinolinium group. With a second CB[7], the binding of the central group is abandoned in favour of the CB[7] hosts encapsulating the two cationic isoquinolinium termini. The 1:1 and 2:1 host–guest stability constants are related to modes of binding and the nature of the central linkers, and are compared with dicationic guests bearing different terminal groups.  相似文献   

13.
Cucurbit[7]uril (CB[7]), an uncharged and water‐soluble macrocyclic host, binds protonated amino saccharides (D ‐glucosamine, D ‐galactosamine, D ‐mannosamine and 6‐amino‐6‐deoxy‐D ‐glucose) with excellent affinity (Ka=103 to 104 M ?1). The host–guest complexation was confirmed by NMR spectroscopy, isothermal titration calorimetry (ITC), and MALDI‐TOF mass spectral analyses. NMR analyses revealed that the amino saccharides, except D ‐mannosamine, are bound as α‐anomers within the CB[7] cavity. ITC analyses reveal that CB[7] has excellent affinity for binding amino saccharides in water. The maximum affinity was observed for D ‐galactosamine hydrochloride (Ka=1.6×104 M ?1). Such a strong affinity for any saccharide in water using a synthetic receptor is unprecedented, as is the supramolecular stabilization of an α‐anomer by the host.  相似文献   

14.
Binding behaviors of cucurbit[6]uril (CB[6]) and cucurbit[7]uril (CB[7]) with a series of bis-pyridinium compounds N, N’-hexamethylenebis(1-alkyl-4-carbamoyl pyridinium bromide) (HBPB-n) (alkyl chain length, n = 6, 8 and 10) guests were investigated using 1H-NMR, ESI–MS and single crystal X-ray diffraction methods. The results show that CB[6] and CB[7] can form [2]pseudorotaxanes with HBPB-n easily. When increasing the length of tail alkyl chain, the binding site of CB[6] at guest molecules changed from the tail to the middle part, while CB[7] remained located over the tail chain. As CB[6] and CB[7] were added in HBPB-8 aqueous solution, a [3]pseudorotaxane was formed by the inclusion of the internal middle site in CB[6] and the tail chain in CB[7].  相似文献   

15.
Molecular dynamics (MD) simulations were carried out to study the host–guest complexation in aqueous solution between cucurbit[7]uril (CB7) and the neutral and protonated forms of benzimidazole derivatives. Complexation occurs via encapsulation of the hydrophobic part (benzene ring) of the guest within the CB7 hydrophobic cavity, and the interactions of the amine group(s) of the imidazole ring of the guest with the CB7 carbonyl portals. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method is used to estimate the host–guest Gibbs energy of binding. The results indicate that CB7 binds the protonated form more strongly than the neutral one, and that the dominant contribution to the Gibbs energy of complexation for the neutral and protonated guests is associated, respectively, with the host–guest van der Waals and electrostatic interactions. Quantum chemical calculations using dispersion-corrected density functional theory (DFT) are used to calculate the binding affinities and to predict the pKa values of the free and complexed guests. The calculated pKa values for the free guests reveal excellent agreement with the experimental values, while for the complexed guests, general trends are obtained.  相似文献   

16.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

17.
We report a supramolecular naphthalene diimide (NDI) radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. The supramolecular radical anion (NDI-2CB[7])⋅, which is obtained from the E. coli-induced in situ reduction of NDI-2CB[7] neutral complex, formed by the host–guest interaction between an NDI derivative and cucurbit[7]uril (CB[7]), exhibits unexpectedly strong NIR-II absorption and remarkable photothermal conversion capacity in aqueous solution. The NIR-II absorption is caused by the self-assembly of NDI radical anions to form supramolecular dimer radicals in aqueous solution, which is supported by theoretically predicted spectra. The (NDI-2CB[7])⋅ demonstrates excellent NIR-II photothermal antimicrobial activity (>99 %). This work provides a new approach for constructing NIR-II photothermal agents and non-contact treatments for bacterial infections.  相似文献   

18.
Due to the great potential of biocompatible cucurbit[7]uril (CB7) and 4-sulfonatocalix[4]arene (SCX4) macrocycles in drug delivery, the confinement of the pharmaceutically important metronidazole as an ionizable model drug has been systematically studied in these cavitands. Absorption and fluorescence spectroscopic measurements gave 1.9 × 105 M−1 and 1.0 × 104 M−1 as the association constants of the protonated metronidazole inclusion in CB7 and SCX4, whereas the unprotonated guests had values more than one order of magnitude lower, respectively. The preferential binding of the protonated metronidazole resulted in 1.91 pH unit pKa diminution upon encapsulation in CB7, but the complexation with SCX4 led to a pKa decrease of only 0.82 pH unit. The produced protonated metronidazole–SCX4 complex induced nanoparticle formation with protonated chitosan by supramolecular crosslinking of the polysaccharide chains. The properties of the aqueous nanoparticle solutions and the micron-sized solid composite produced therefrom by nano spray drying were unraveled. The results of the present work may find application in the rational design of tailor-made self-assembled drug carrier systems.  相似文献   

19.
The binding of the polyaromatic guest, 3,6-diaminoacridine (Proflavine) to cucurbit[n]uril (CB[n]) where n = 6, 7 and 8 has been studied by fluorescence spectrophotometry and binding constants determined using a least squares fitting method. Titration of CB[8] into a solution of Proflavine results in a 95% decrease in fluorescence up to a CB[8] to Proflavine ratio of 2:1. From the induced fluorescence spectra a binding constant of 1.9 × 107 M? 1 was determined. When Proflavine is titrated into a solution of CB[8] a similar binding constant is calculated (1.3 × 107 M? 1). Titration of CB[6] into a solution of Proflavine yields a decrease in fluorescence of 18–20%, but no binding is observed beyond what is seen within experimental error. Finally, titration of CB[7] into a solution of Proflavine results in an increase in fluorescence (32%) and a blue-shift of the emission wavelength from 509 nm to 485 nm. From the induced fluorescence spectra a binding constant of 1.65 × 107 M? 1 was determined. From 1H NMR it appears that the decrease in fluorescence for Proflavine with CB[6] and CB[8] is due to collisional quenching, whereas the increase in fluorescence with CB[7] may be due to rotational restriction.  相似文献   

20.
The synthesis of two supramolecular diruthenium complexes, 1 ?CB[7] and 1 ?CB[8] (CB[n]=cucurbit[n]uril), which contain the respective host CB[7] and CB[8], were synthesized and isolated. In the case of host CB[8], the desired supramolecular complex was obtained by utilizing dihydroxynapthalene as a template during the synthesis. The 1H NMR spectra, electrochemistry, and photochemistry of these supramolecular complexes were performed in nonaqueous solution. The results show that both CB[7,8] hosts mainly bind to the linker part in solution in acetonitrile. This binding also lowers the oxidation potential of the ruthenium metal center and hinders the quenching effect by the viologen moiety. It has also been shown that external methylviologen can be included into 1 ?CB[8]. Analysis with NMR spectroscopy, electrochemistry, and photochemistry clearly shows a viologen radical dimer formation between the bound viologen and free methylviologen, thereby showing that the unique abilities of the CB[8] host can be utilized even in nonaqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号