首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A novel scheme was developed for the synthesis of pure polyisobutylene-poly(p-methylstyrene) block copolymers by sequential monomer addition. The synthesis involves the living polymerization of isobutylene by the TiCl4/methyl chloride:methylcyclohexane or hexanes 40:60 v:v/ -80°C system in the presence of di-tert-butylpyridine. When the polymerization of isobutylene is complete, the living polyisobutylene chain end is transformed to the corresponding diphenyl alkyl end by capping with 1,1-diphenylethylene. Subsequently, titanium(IV) isopropoxide or titanium(IV) butoxide is added to decrease the Lewis acidity followed by the addition of p-methylstyrene. The success of the method was demonstrated by p-methylstyrene homopolymerization experiments initiated by 2-chloro-2,4,4-trimethylpentane that resulted in ~ 100% initiator efficiencies when the TiCl4/titanium(IV) isopropoxide or -butoxide ratio was less than 25/7, as well as by the clean synthesis of polyisobutylenepoly(p-methylstyrene) diblock copolymers.  相似文献   

2.
Abstract

Novel thermoplastic elastomers (TPEs) consisting of a central rubbery polyisobutylene (PIB) segment flanked by two glassy outer segments comprising indene (Ind)-co-p-methylstyrene (pMeSt) random copolymers have been prepared. The synthesis was effected by sequential monomer addition in one reactor: The process starts by the biliving homopolymerization of isobutylene (IB) and yields the living dication +PIB+; the latter, upon the introduction of Ind/pMeSt mixtures, induces the living copolymerization of these monomers and yields the target TPE P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) triblock. The length of the rubbery midblock and the composition of the Ind-co-pMeSt random copolymer outer blocks (i.e., the overall composition of the triblocks) can be readily controlled. The glass transition temperature (Tg ) of the outer blocks can be fine-tuned by controlling the relative Ind/ pMeSt composition. The triblocks are excellent TPEs; for example, a P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) of M n ≈ 115,000 g/mol containing a PIB midblock of M n ≈ 70,200 g/mol and glassy copolymer outer blocks of P(Ind-co-pMeSt) [Ind/pMeSt = 41/59 (w/w)] exhibited 23.4 MPa tensile strength and 460% elongation. Tensile strengths and 300% moduli increase with the relative amount of the glassy segment present. Hardness increases with increasing Ind content.  相似文献   

3.
Abstract

The effect of anion concentration on the apparent rate constant of polymerization kA p of isobutylene (IB) induced by the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 initiating system using the CH2Cl2/nC6H14 (60/40 v/v) solvent system at ?40 and ?80°C was studied by the use of nBu4NCl. Computer simulation has shown that kA p decreases several orders of magnitude upon the addition of even a very small amount of common anion TiCl?- 5 to the charge. The rate of change is reduced in the concentration range of experimental interest. It was concluded that the decrease of kA p with increasing TiCl ?- 5 concentration is mainly due to the decreasing contribution of propagation by free ions. The contribution (%) of propagation by free ions to the apparent rate of propagation was calculated.  相似文献   

4.
The aim of this research was to develop a quantitative treatment of the consequences of relatively slow initiation on M n and N (the number of molecules formed, Wp/M n , where Wp =weight of polymer formed) in living carbocationic polymerizations, particularly for the case of the incremental monomer addition (IMA) technique. This has been achieved by analysis of the effect of initiator efficiency (Ieff (%) = 100N/[I 0], where [I 0] = initiator input) on M n versus Wp , and N versus Wp plots. Three types of systems have been discerned: 1) Ieff equal to 100%; 2) Ieff constant but less than 100%; and 3) Ieff less than 100% but increasing with increasing number of monomer increments j by the IMA technique. Thus conditions can be found under which slowly initiating systems yield close to “ideal” product, i.e., one with M n = [M0 ]/[I0 ] and narrow molecular weight distribution (M w /M n ≈ 1.1). The corresponding equations and plots can be used to diagnose the mechanism. Subsequently, this quantitative analysis was used to describe a novel living system, trans‐2,5‐diacetoxy‐2,5‐dimethyl‐3‐hexene (DiOAcDMH6)/BCI3/isobutylene/CH3CI. This system produces linear t‐chlorine‐telechelic polyisobutylenes under homogeneous conditions. Surprisingly, cationation seems to be rate determining. This conclusion is illustrated by chemical equations.  相似文献   

5.
It has been shown that in addition to classical living polymerizations, several other polymerization systems exist that may exhibit partially living so-called quasiliving character. The single requirement for quasiliving polymerization is the absence of irreversible termination. The various possible living systems have been classified by taking into consideration the absence or reversibility of termination and the absence, reversibility, or irreversibility of chain transfer. In regard to chain transfer, both unimolecular and/or bimolecular processes have been considered. A comprehensive examination of all possibilities yielded, in addition to the classical terminationless-transferless living system, five quasiliving systems. Kinetic analysis led to equations defining these systems and to diagnostic techniques useful for the classification and characterization of the mechanism of living carbocationic polymerizations.  相似文献   

6.
Forced ideal carbocationic copolymerization of isobutylene and isoprene has been achieved by continuous addition of monomer mixtures of different compositions to cumyl chloride/TiCl4 charges at -50°C. The overall rate of copolymerization could be kept equal to that of addition rate with up to 10 mol% isoprene in the mixed monomer feed. In this monomer concentration range the composition of the copolymer was identical to that of the feeds. At higher diene concentrations in the feed, chain transfer to monomer and other side reactions (intramolecular cyclization, gel formation) could not be completely avoided. The number-average molecular weight of the copolymers increased almost linearly with the amount of consumed monomers at 10 mol% isoprene concentrations in the feed (i.e., in the quasiliving range). According to 1H-NMR and 13C-NMR spectroscopy, the products are random copolymers.  相似文献   

7.
Abstract

A two-stage process was developed for the living polymerization of isobutylene (IB) employing di-tert-alcohol initiators in conjunction with BCl3 coinitiator in the first or initiation stage, followed by TiCl4 coinitiator in the second or propagation stage; the process was shown to yield high molecular weight (up to M n 20,000), narrow molecular weight distribution (MWD) M w/M n = 1.1–1.2) di-tert-chlorine telechelic polyisobutylenes (tCl-PIB-Clt). The initiation stage involves the homogeneous solution living polymerization of IB induced by the di-tert-alcohol/BCl3 combination in the presence of an electron donor such as N,N-dimethylacetamide in CH3Cl solvent at ?80°C and proceeds up to M n < 5000; this is followed by the propagation stage in which TiCl4 and the bulk of IB plus a sufficient amount of n-C6H14 are added to the charge to bring the solvent composition to CH3Cl/n-C6H14 60/40 v/v and the living polymerization is continued until high M n product is obtained. This two-stage process was developed because 1) it employs very inexpensive chemicals; 2) di-tert-alcohol/BCl3 combinations initiate living IB polymerization in CH3Cl but the product after reaching M n ≤ 5000 precipitates out of the CH3Cl solution, and di-tert-alcohol/BCl4 combinations do not initiate IB polymerization; and 3) di-tert-alcohol/BCl3 systems do not initiate (or only very slowly) the living polymerization of IB in CH3Cl/n-C6H14 mixtures, whereas similar TiCl4-based systems do. The polymerization remains living during both stages although the propagating species and solvent polarity are profoundly altered. The livingness of the system has been analyzed by kinetic experiments and the structure of the tCl-PIB-Clt product by routine spectroscopic means.  相似文献   

8.
Forced ideal carbocationic copolymerization of α-methylstyrene (αMeSt) with p-tert-butylstyrene (ptBuSt) and (αMeSt) with styrene (St) has been achieved by continuous monomer feed addition to a cumyl chloride/BCl3 charge at -50°C by keeping the feeding rate of the monomer mixtures equal to the overall rate of copolymerization, The composition of the copolymers was identical to the composition of the monomer feeds over the entire concentration range. A quantitative expression has been derived to show that under forced ideal copolymerization conditions the composition of the copolymer can be controlled by the composition of the feed. Further, conditions have been found for forced ideal quasiliving copolymerizations, i.e., the number-average molecular weight of the copolymers increased almost linearly with the cumulative weight of consumed monomers by the use of suitably slow, continuous feed addition in the presence of relatively nonpolar solvent mixtures (60/40 v/v n-hexane + methylene chloride). In polar solvent (methylene chloride) the molecular weight increase was less pronounced due to chain transfer to monomer involving indane-skeleton formation; however, with charges containing large amounts of ptBuSt the molecular weight increase was surprisingly strong. Interestingly, ptBuSt does not homopolymerize in 60/40 v/v n-hexane/methylene chloride but it readily copolymerizes with αMeSt. This observation was explained by examining the relative rates of terminations of the cationic species involved. Conditions have been found for the pronounced quasiliving polymerization of St. In forced ideal quasiliving copolymerizations neither the molecular weights of αMeSt/ptBuSt or αMeSt/St copolymers nor the initiating efficiencies of the initiating systems used show a depression. The microstructure of representative αMeSt/ptBuSt copolymers obtained under forced ideal quasiliving conditions has been analyzed by 13C-NMR spectroscopy. According to these studies, true copolymers have formed and resonance peaks for various triads have been deduced.  相似文献   

9.
Forced ideal carbocationic copolymerization of isobutylene/styrene systems has been achieved by continuous addition of mixed monomer feeds to 2-chloro-2,4,4-trimethylpentane/TiCl4 in n-hexane/methylene chloride charge by keeping the input rate equal to the overall rate of copolymerization. The composition of the copolymers was identical to that of the feeds over the entire monomer concentration range. The number-average molecular weight of the copolymers increased almost linearly with the amount of consumed monomers at higher isobutylene concentrations in the feed. The molecular weight increase was less pronounced at higher styrene concentration because more methylene chloride had to be used in the solvent system to keep the copolymer in solution. The micro-structure of the copolymers is uniform as determined by gel permeation chromatography (UV plus RI) and 13C-NMR spectroscopy According to these studies, true copolymers have formed. The probability of triads in the copolymer has been determined.  相似文献   

10.
The synthesis of α,ω-di-t-chloropolyisobutylene has been accomplished by living polymerization using aliphatic and aromatic tert-diacetate initiators in conjunction with BCl3 coinitiator in various solvents in the ?20 to ?70°C range. The living nature of the polymerizations was demonstrated with the instantaneous initiators 2,4,4,6-tetramethyl-heptane-2,6-diacetate and 1,4-di(2-propyl-2-acetate)benzene by linear [Mbar]n versus amount of PIB formed (W PIB) plots starting at the origin. The formation of undesirable indanyl structures that arise with the aromatic initiator can be suppressed by decreasing the temperature and the polarity of the polymerization medium (i.e., by using CH3Cl/n-C6H14 mixtures). Living polymerization of isobutylene can also be obtained with noninstantaneous initiators, e.g., 2,5-dimethylhexane-2,5-diacetate, 2,5-dimethylhexyne-2,5-diacetate. However, with these systems the initiator efficiency is less than 100%.  相似文献   

11.
Abstract

The living polymerization of styrene was achieved with the 2,4,4-trimethyl-2-pentyl chloride/TiCl4/MeCl:methylcyclohexane 40:60 v:v/?80°C polymerization system in the presence of di-tert-butylpyridine in concentrations comparable to the concentration of protic impurities. It was determined that the living nature of the polymerization is not due to carbocation stabilization. The polymerization is second order in TiCl4. Side reactions, namely polymerization by direct initiation and intermolecular alkylation, are operational, and a careful selection of experimental conditions is necessary to minimize their effect and obtain apparently living behavior. Polymerization by direct initiation can be minimized by increasing the initiator concentration, and intermolecular alkylation can be reduced by quenching the polymerization system when the conversion reaches close to 100%.  相似文献   

12.
Abstract

The synthesis of novel asymmetric telechelic polyisobutylenes (PIB) carrying a CH3OCO— headgroup and a —CH2C(CH3)2C1 tailgroup by the use of novel initiators mediating the living carbocationic polymerization (LC+Pzn) of isobutylene (IB) is described. Subsequently, the parent headgroup has been quantitatively converted into a HOCO— group, and the parent tailgroup into a —pC6H4OH group. Scheme 1 summarizes the synthesis routes to the initiators, as well as the polymerizations and functionalizations leading to various asymmetric telechelic PIBs. The CH3OCO— headgroup of the initiator most likely functions as an internal electron donor during the LC+Pzn of IB.  相似文献   

13.
Abstract

Living copolymerization of the isobutylene (IB)-p-methylstyrene (pMeSt) monomer pair in combination with the constant copolymer composition (CCC) technique produces high molecular weight ( M n ≈ 100,000 g·mol?1) and narrow molecular weight distribution ( M w/ M n ≈ 1.45) compositionally uniform IB/pMeSt copolymer molecules in the industrially important IB/pMeSt = 97–99/3–1 mol% composition range. Syntheses were carried out with TiCl4 coinitiator in n-butyl chloride homogeneous solution at ?85°C by the use of the Leidenfrost reactor (i.e., by direct cooling of the charge with liquid nitrogen). In order to carry out the CCC technique it was necessary to obtain reliable copolymerization reactivity ratios. These investigations led to rIB = 0.5 ± 0.1 and r pMeSt = 10 ± 4. The attainment of CCC and living copolymerization conditions has been quantitatively demonstrated by dedicated diagnostic plots. Specifically, the attainment of CCC conditions was proven by the analysis of composite rate plots (comonomers input and corresponding copolymer formed versus time) and composition plots (comonomer composition in feed and copolymer formed versus weight of copolymer formed, W p), and living copolymerization was proven by linearly ascending number-average molecular weight of copolymer ( M n) versus W p plots starting at the origin.  相似文献   

14.
The mechanism of polymerization of p-tert-butylstyrene (ptBuSt) initiated by the cumyl chloride/BCl3 initiating system in CH2Cl2 at -50°C has been investigated. At and below ~0.4 M ptBuSt, quasiliving polymerizations proceed, i.e., initiation is instantaneous, termination is absent or reversible, and chain transfer to monomer can be suppressed or eliminated. In the quasiliving range the M n versus [ptBuSt]0 plot is linear and passes through the origin, and a M w/M n decreases much below 2.0 with decreasing [ptBuSt]. GPC traces change from broad multimodal to narrow monomodal and the color of polymerization charges change from colorless to golden-yellow with decreasing [ptBuSt]. The effect of temperature jump subsequent to monomer addition has been examined; however, it does not explain the peculiar monomer concentration effect on the mechanism. Changes in the ionicity may be responsible for this phenomenon.  相似文献   

15.
Quasiliving polymerization of indene, i.e., an increase of the molecular weight of polyindenes with the cumulative amount of consumed monomer, has been demonstrated using the “H2O”/ BCl3, 2-chloroindene/BCl, “H2O”/TiCl4, 2-chloroindene/TiCl4, and cumyl chloride/TiCl4 initiating systems in CH2Cl2 solvent at -50°C. However, chain transfer operates in every system investigated, and sets a limit to DP n,max. The efficiency of the 2-chloroindene and cumyl chloride initiators is very low. The behavior of BCl3 and TiCl4 coinitiators on the polymerization has also been investigated.  相似文献   

16.
The polymerization of 2,4,6-trimethylstyrene (vinyl mesitylene) has been investigated, and quasiliving polymerizations have been achieved under a comfortably wide experimental condition range. This monomer is particularly suitable for quasiliving polymerizations because the methyl groups in the 2 and 6 positions prevent chain transfer to monomer involving indanyl-skeleton formation. Quasiliving polymerizations readily occurred by the use of cumyl chloride/TiCl4 or BCl3 initiating systems in various n-C6H14/CH2Cl2 mixtures at -50°C. Because indanyl-skeleton formation is impossible, the rate of monomer addition can be safely decreased to very low values without risking chain transfer by intramolecular alkylation.  相似文献   

17.
Abstract

Colloidal palladium supported on a chelate resin containing iminodiacetic acid groups was prepared by refluxing the palladium chelate resin in methanol-water. Using the resin-supported colloidal palladium as a catalyst, cyclopentadiene was hydrogenated to cyclopentene in 97.1% selectivity at 100% conversion of cyclopentadiene under 1 atm of hydrogen in methanol at 30°C. Finely dispersed metal particles ranging from 10 to 60 Å in diameter were observed in the resin by electron microscopy. Both x-ray microanalysis for palladium and elution analysis of palladium ion with an aqueous solution of ethylenediaminetetraacetic acid disodium salt demonstrated the existence of large amounts of palladium ion complexes in the resin. The amount of palladium metal in the resin was estimated to be about 5% of the total palladium. Since the resin, after removal of most of the ionic palladium, exhibited almost the same catalytic activity as before, it was concluded that the finely dispersed metal particles are the active species in the catalyst.  相似文献   

18.
To gain increased insight into the mechanism of living polymerization of isobutylene (IB) and specifically into the effect of the structure of the initiator on the rate, we have investigated the polymerization of IB initiated by eight 2,4,4-trimethylpentyl (TMP) esters RCOO-C(CH3)2C(CH3)3 where R = -CCl3, -CHCl2, -CH2C6H5, -CH3 -CH(CH3)2, -C(CH3)3, -C6H5, and -CH=CHC6H5 in conjunction with BCl3 coinitiator using CH3Cl diluent at -30°C. The rates decreased along the sequence of these substituents from very high values (with R = -CCl3, -CHCl2) to very low values (R = -C(CH3)3, -C6H5, -CH=CHC6H5). The trend of decreasing rates was interpreted in terms of inductive effects. According to conversion-time curves obtained with the five esters R = -CH2C6H5, -CH(CH3)2, -C(CH3)3 -C6H5, and -CH=CHC6H5, propagation is first order in monomer and the apparent rate constants of propagation decrease along the above sequence, suggesting the presence of inductive effects and the absence of resonance effects. With highly electron-donating substituents, i.e., with R = -CH(CH3)2 -C(CH3)3, -C6H5, and -CH=CHC6H5, chain transfer to monomer is operational, the rates of which were found to be monomolecular (zero order in monomer). Chain transfer to monomer can be avoided by increasing the polarization of the C-O bond by using slightly electron-donating or strongly withdrawing substituents (R = -CH2C6H3, -CH3 or -CHCl2, -CCl3) or by the use of CH2Cl2; both measures also result in enhanced propagation rate constants. Solvent polarity critically affects the stability of the growing chain end. By decreasing the polarity of the solvent, the decomposition temperature of the growing site decreases, leading to termination. Quenching studies have been carried out with model compounds as well as with polymerization systems and both kinds of experiments indicated the exclusion formation of t-chloro endgroups.  相似文献   

19.
The polymerization of isobutylene has been investigated by the use of the steady, slow, continuous monomer addition technique in the presence of a variety of initiating systems, i.e., “H2O”/TiCl4, “H2O”/AlCl3, C6H5C(CH3)2Cl/TiCl4, p-ClCH2 C6(CH3)4* CH2Cl/AlCl3 at -50°C. Quasiliving polymerizations have been obtained with the “H2O” and C6H5(CH3)2Cl/TiC14 systems in 60/40 v/v n-hexane/methylene chloride solvent mixtures with very slow monomer input. After a brief “flash” polymerization, the M n of PIB increased linearly with the cumulative amount of monomer added (consumed); however, the number of polymer molecules formed also increased, indicating the presence of chain transfer to monomer. With the “H2O”/TiCl4 initiating system, M n,max was 56,000 and M w /M n < 2.0. By the use of the C6H5C(CH3)2CL/TiCl4 initiating system, quasiliving polymerization has been achieved and chain transfer could virtually be eliminated.  相似文献   

20.
In quasiliving polymerizations with reversible chain transfer (QL0R systems), polymers with narrow molecular weight distribution can be obtained, It has been shown that while in true living systems (L00) R = 1, and in quasiliving systems with irreversible chain transfer (QL01) R = 2 is the limiting value of polydispersity, in QL0R systems r = 4/3 is the polydispersity to which the distribution of the polymer tends with increasing polymerization time. This limit is independent of the rate of reinitiation; the course of the R vs t curves is, however, determined by the various rate constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号