首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
Theoretical studies of structures of neutral molecules and their anions as well as dissociative electron attachment properties are presented for the halomethanes of general formula CX(n) Y(m); X=H, F; Y=Cl, Br, I; n=0,4; m=4-n. The dissociative electron attachment seems to be the primary process resulting in toxicity of these species. The halomethane anions containing hydrogens are formed as radical-anion adducts. When H is replaced by F, these species become true sigma* radicals. The electron affinities are computed using a variety of computational techniques including the four-order M?ller-Plesset (MP4) technique that included 250 basis functions. It is challenging to compare the computed results with experiment due to dearth of experimental data and uncertainties in the existing experimental data. Thus in certain cases larger differences are found between the computed and experimental values.  相似文献   

2.
The structural stability and bonding energies of the neutral noble gas molecules FNgX and their anions FNgX? (Ng = He, Ar, Kr; X = O, S) are discussed at the CCSD(T)/aug‐cc‐pVnZ (n = D, T) levels. Results reveal that only two neutral FKrX molecules are stable, whereas their FHeX and FArX counterparts are not. All their anions are stable and the stability mainly derives from the contribution of the extra electron, i.e., the attachment of the electron greatly enhances the orbital interactions of two bonds, F? Ng and Ng? X. Different from the anion counterparts, the electrostatic interaction energy plays a crucial role in the FKrX stability. Compared with those unstable FHeX and FArX counterparts, the enough charge distribution over each atom of FKrX ensures the effective bonding between F and Kr, and between Kr and X, consequently strengthen the stability of the neutral FKrX (X = O, S) structures. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
Nonstoichiometric silver-halogen cluster compounds Ag n X m (0≤mn;X=F, Br) are generated by cocondensation of Ag atoms and AgX species using a slightly modified gas aggregation technique. The AgX molecules are produced by partial decomposition of SF6 and Br2 respectively at the surface of the hot silver containing crucible, followed by the reaction of halogen atoms with silver, giving rise to the formation of AgX molecules. In a heterogeneous nucleation between these molecules and evaporated Ag atoms the afore mentioned cluster compounds are formed. The degree of halogenation can either be controlled by the adjustment of the silver evaporation rate, or even more easily by controlling the partial pressure of the halogenating agent. The mass spectra of singly charged halogenated clusters, which are generated by electron impact ionization, reflect the stability of ions. These mass spectra demonstrate that there is an alternation in the intensity pattern up to a relatively high degree of halogenation (m) for each of the investigated compound series Ag n X m ,n≤8. This behavior is similar to the well-known odd-even effect for pure metal clusters, allowing us to postulate the existence of a “metallic” core which governs the stability of the cluster ion (at least for not too high degree of halogenation).  相似文献   

4.
We performed a comprehensive study of the size‐, shape‐, and composition‐dependent polarizabilities of SimCn (m, n = 1–4) clusters on the basis of the density‐functional‐based coupled perturbed Hartree–Fock calculations. We found better correlations between the polarizabilities and both the binding energies (Eb) and change in charge distribution (Δq) than the energy gaps. The α values exhibit overall decreasing and increasing trends with increases in the Eb and Δq values, respectively. For isomers with the same Eb values and different polarizabilities, Δq can well explain the difference in polarizabilities. The π‐electron delocalization effect is the best factor for understanding the shape‐dependence. For a given m/n value, the linear clusters have an obviously larger polarizability than both the prolate and compact clusters, irrespective of the cluster size. We fit a quantitative expression [α = A ? (A ? B) × exp(?k(m/n))] to describe the composition‐dependent polarizabilities. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Treatment of the geminal Ga/P‐based frustrated Lewis pair (FLP) Mes2P–C(GatBu2)=C(H)–Ph ( 1 ) with HX (X = F, Cl, Br, I) afforded the corresponding adducts 2 with the protons bound to the P and the halide anions coordinated to the Ga atoms. Short intramolecular contacts may indicate P–H ··· X hydrogen bonding interactions. The Br and I compounds ( 2c , 2d ) were accessible in moderate yields even when aqueous solutions of the acids were employed. These unexpected reactions confirm the surprising stability of FLP 1 towards protolysis. Heterocumulenes R–N=C=Y (Y = O, S) and 1 yielded adducts with two different structural motifs. The N=C=Y groups were coordinated to the FLP either via the C=Y (Y = S; Ph–N=C=O) or the C=N bonds (Ph–N=C=O, Et–N=C=O). For phenyl isocyanate the C=O bonded isomer was observed in the solid state, while both isomeric forms were detected in solution. Steric shielding and the hardness of the atoms may influence the formation of the respective isomer. Cleavage of the C=S bonds of isothiocyanates was observed for the first time and afforded a sulfur adduct 9a , in which an S atom (electron sextet) was bound to the lone pair of electrons at phosphorus and to the Lewis acidic Ga atom. Four‐membered PCGaY heterocycles resulted, which were also synthesized in high yields by the direct reaction of 1 with propylene sulfide or selenium.  相似文献   

6.
Geometries, electronic states, and electron affinities of GamPn and GamP (m + n = 2–5) clusters have been examined using four hybrid and pure density functional theory (DFT) methods. Structural optimization and frequency analyses are performed with the basis of a 6‐311+G(2df) one‐particle basis set. The geometries are fully optimized with each DFT method independently. Three types of energy separations reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The calculation results show that the singlet structures have higher symmetry than that of doublet structures. The best method for predicting molecular structures was found to be BLYP, while other methods generally underestimated bond lengths. The most reliable adiabatic electron affinities and vertical detachment energy, obtained at the BP86 and B3LYP level of theory, are predicted to be 2.22 and 2.10 eV (GaP), 2.51 and 2.46 eV (Ga2P), 1.86 and 1.94 eV (GaP2), 1.96 and 2.27 eV (GaP3), 1.76 and 1.99 eV (Ga3P), 1.79 and 2.14 eV (Ga2P2), 2.85 and 3.67 eV (GaP4), 2.08 and 2.10 eV (Ga4P), 2.90 and 3.17 eV (Ga2P3), and 2.70 and 3.37 eV (Ga3P2), respectively. Those for Ga2P, Ga3P, Ga2P2, Ga4P, GaP4, Ga2P3, and Ga3P2 are in good agreement with experiment, but the predicted EAad values for GaP, Ga2P, GaP2, and GaP3 are larger than the available experimental values. For the vibrational frequencies of the GamPn series, the B3LYP method produces good predictions with the average error only ~10 cm?1 from available experimental and theoretical values. The other three methods overestimate or underestimate the vibrational frequencies, with the worst predictions given by the BLYP method. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
Based on the dependences v(CO) =a + b* for IR spectra of carbonyi complexes of transition metals, the inductive constants of the organometallic fragments M(CO) m Cp n and HgM(CO) m Cp n (M = Co, Mo, Mn, Fe, Re) have been determined. The acceptor properties of the organometallic fragments have been shown to change according to the order of the nucleophilicity of the anions: Fe(CO)2Cp > Re(CO)5 > Mn(CO)5 > Mo(CO)3Cp > Co(CO)4.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1482–1484, August, 1994.  相似文献   

8.
The range of electrochemical stability of a series of weakly coordinating halogenated (Hal=F, Cl, Br, I) 1‐carba‐closo‐dodecaborate anions, [1‐R‐CB11X5Y6]? (R=H, Me; X=H, Hal, Me; Y=Hal), has been established by using quantum chemical calculations and electrochemical methods. The structures of the neutral and dianionic radicals, as well as the anions, have been optimized by using DFT calculations at the PBE0/def2‐TZVPP level. The calculated structures are in good agreement with existing experimental data and with previous calculations. Their gas‐phase ionization energies and electron affinities were calculated based on their optimized structures and were compared with experimental (cyclic and square‐wave) voltammetry data. Electrochemical oxidation was performed in MeCN at room temperature and in liquid sulfur dioxide at lower temperatures. All of the anions show a very high resistance to the onset of oxidation (2.15–2.85 V versus Fc0/+), with only a minor dependence of the oxidation potential on the different halogen substituents. In contrast, the reduction potentials in MeCN are strongly substituent dependent (?1.93 to ?3.32 V versus Fc0/+). The calculated ionization energies and electron affinities correlate well with the experimental redox potentials, which provide important verification of the thermodynamic validity of the mostly irreversible redox processes that are observed for this series. The large electrochemical windows that are afforded by these anions indicate their suitability for electrochemical applications, for example, as supporting electrolytes.  相似文献   

9.
The performance of effective core potentials (ECP) for the main group elements of group IV has been studied by calculating the geometries and reaction energies of isodesmic reactions for the molecules M(CH3)nCl4 ? n (M = C, Si, Ge, Sn, Pb; n = 0–4) at the Hartree–Fock level of theory. The results are compared with data from all electron calculations and experimental results as far as available. The all electron calculations were performed with a 3-21G(d) and a 6-31G(d) basis set for Si, a (43321/4321/41) basis set for Ge, and a (433321/43321/431) basis set for Sn. For the ECP calculations the potentials developed by Hay and Wadt with a configuration (n)sa(n)pb and the valence basis set (21/21), extended by a set of d functions, are employed. © 1992 by John Wiley & Sons, Inc.  相似文献   

10.
The electronic structure of the C2nH2n+2 trans-polyenes, n = 3–7, is calculated by the Discrete Variational Xα method (DVM -Xα). The valence ionization potentials (IP ) calculated using the Clementi double zeta basis agree with the known experimental data within several tenths an electron volt. However, the DVM energies of the π → π* optical excitations are systematically underestimated by 0.8–1.0 eV. For polyenes with equal C—C bond lengths, the computed energies of the first optical transitions are smaller than those of polyenes with alternating C—C bond lengths. The charge distribution in polyenes is analyzed in the framework of a Mulliken scheme. The composition of the frontier molecular orbitals (MO ) is analyzed.  相似文献   

11.
The ring current and local anisotropic contributions to the 1H chemical shifts of [n]annuleno[m]annulenes and [n]annulenyl[m]annulenes with n, m = 12, 14, 18 and n, m = 13, 15 are calculated. The agreement between experimental and calculated shifts for the few known compounds is very good so that the predictions for the as yet unknown compounds are reliable. The effect of an annulene ring on the shifts of the protons at the other ring in these bicyclic compounds is discussed for several types of fusion of the two constituent annulenes.  相似文献   

12.
A series of progression bands observed in the infrared spectra of nylon‐m/n and their model compounds have been interpreted in a new manner on the basis of simply coupled oscillator models of zigzag alkyl chains. Nylon‐m/n possesses the methylene sequences of (CH2)m and (CH2)n?2, and so the effective models of m and n ? 2 coupled oscillators, respectively, had previously been assumed for the methylene rocking–twisting mode, for example. However, the spectral patterns of progression bands predicted by this previously proposed model have been found to be inconsistent with those observed for many kinds of nylon samples with various m and n values. It is rather reasonable to assume that the effective numbers of oscillators should be m ? 2 and n ? 4 for the methylene rocking, twisting, and wagging modes of the (CH2)m and (CH2)n?2 sequences, respectively. In other words, the infrared progression bands observed for methylene local modes of nylon‐m/n may be interpreted reasonably with the data of n‐alkane molecules with the chemical formulae CH3(CH2)m?2CH3 and CH3(CH2)n?4CH3. For the C? C stretching modes, the equivalent n‐alkanes are CH3(CH2)m?1CH3 and CH3(CH2)n?3CH3, respectively. In the simply coupled oscillator model, the vibrational mode of one methylene group is represented by an oscillator, for example. Our new concept is to isolate the terminal oscillator adjacent to the amide group from the other oscillators in the inner parts of the methylene zigzag sequence. This corresponds to a physical situation in which the methylene group adjacent to the amide group shows a different vibrational behavior of larger amplitude than those of the inner methylene sequence, as supported by broad‐line NMR data and molecular dynamics calculations reported in the literature. Another possibility is a difference in the electron structure of the methylene unit adjacent to the amide group from that of the inner methylene sequence, resulting in a difference in the force constant and giving a vibrational decoupling between these two types of methylene units. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1294–1307, 2003  相似文献   

13.
It is reported that ions gererated in the gas phase by dissociative electron attachment to nitrous oxide react with propyne-d3 (trideuteromethyl acetylene) to yield the ions ?D?C?C H, ?D2? C?C?, ?CD2C?CH and CD3C?C?. From their differing reactivity with methyl formate it is suggested that these four ions are distinct stable species.  相似文献   

14.
Perfluoromethyl-Element-Ligands. XVII. Formation of Adducts of MenE(CF3)3?n Ligands with BX3 Compounds (Me = CH3; E = P, As, Sb; n = 0–3; X = H, CH3, Hal) The ligands MenE(CF3)3?n (Me = CH3; E = P, As, Sb; n = 0–3) have been prepared (partly using new methods) and studied by n.m.r. spectroscopy (1H, 19F, 31P, 13C). In order to deduce their relative donor strength their reactions with the Lewis acids “BH3”, BMe3, BMe3, Me2BBr, and BX3 (X = F, Cl, Br) have been studied. Control of adduct formation occurs by n.m.r. spectroscopy (1H, 19F). The following series of decreasing basicity or acidity are obtained:   相似文献   

15.
The restricted Hartree-Fock method was used to determine the cycle size effects on the geometric parameters of several inorganic templates, cyclophosphazenes PnNnX2n (X = H, F, Cl; n = 2, 3, 4). A topological analysis of local electronic properties at the electron density critical points of bonds allowed us to quantitatively characterize the chemical bond in cyclophosphazenes and its dependence on the cycle size and substituents at phosphorus. The calculated distributions of the electron density Laplacian and electron pair localization functions revealed the special features of the electronic structure of the nitrogen and phosphorus atoms. These results explain the nature of noncovalent interactions between the P atoms of one cyclophosphazene molecule and the N atoms of the other.  相似文献   

16.
In order to shed light upon the nature and mechanism of 4f-3d magnetic exchange interactions, a series of binuclear complexes of lanthanide(3+) and chromium(3+) with the general formula [Ln(L)5(H2O)2Cr(CN)6]·mL· nH2O (Ln=La (1), Ce (2), Pr (3), Nd (4); x=5, y=2, m=1 or 2, n=2 or 2.5; L=2-pyrrolidinone) and [Ln(L)4(H2O)3Cr(CN)6] ·nH2O (Ln=Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10); x=4, y=3, m=0, n= 1.5 or 2.0; L=2-pyrrolidinone) were prepared and the X-ray crystal structures of complexes 2, 6 and 7 were determined. All the compounds consist of a Ln-CN-Cr unit, in which Ln^3+ in a square antiprism environment is bridged to an octahedral coordinated Cr^3+ ion through a cyano group. The magnetic properties of the complexes 3 and 6-10 show an overall antiferromagnetic behavior. The fitting to the experimental magnetic susceptibilities of 7 give g= 1.98, J=0.40 cm^-1, zJ'= -0.21 cm^-1 on the basis of a binuclear spin system (Scd=7/2, Scr=3/2), revealing an intra-molecular Gd^3+-Cr^3+ ferromagnetic interaction and an inter-molecular antiferromagnetic interaction. For 7 the calculation of quantum chemical density functional theory (DFT), combined with the broken symmetry approach, showed that the calculated spin coupling constant was 20.3 cm^-1, supporting the observation of weak ferromagnetic intra-molecular interaction in 7. The spin density distributions of 7 in both the high spin ground state and the broken symmetry state were obtained, and the spin coupling mechanism between Gd^3+ and Cr^3+ was discussed.  相似文献   

17.
α‐Halogenoacetanilides (X=F, Cl, Br) were examined as H‐bonding organocatalysts designed for the double activation of C?O bonds through NH and CH donor groups. Depending on the halide substituents, the double H‐bond involved a nonconventional C?H???O interaction with either a H?CXn (n=1–2, X=Cl, Br) or a H?CAr bond (X=F), as shown in the solid‐state crystal structures and by molecular modeling. In addition, the catalytic properties of α‐halogenoacetanilides were evaluated in the ring‐opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α‐dichloro‐ and α‐dibromoacetanilides containing electron‐deficient aromatic groups afforded the most attractive double H‐bonding properties towards C?O bonds, with a N?H???O???H?CX2 interaction.  相似文献   

18.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

19.
Various properties (such as optimal structures, structural parameters, hydrogen bonds, natural bond orbital charge distributions, binding energies, electron densities at hydrogen bond critical points, cooperative effects, and so on) of gas phase ethanol–(water)n (n = 1–5) clusters with the change in the number of water molecules have been systematically explored at the MP2/aug‐cc‐pVTZ//MP2/6‐311++G(d,p) computational level. The study of optimal structures shows that the most stable ethanol‐water heterodimer is the one where exists one primary hydrogen bond (O? H…O) and one secondary hydrogen bond (C? H …O) simultaneously. The cyclic geometric pattern formed by the primary hydrogen bonds, where all the molecules are proton acceptor and proton donor simultaneously, is the most stable configuration for ethanol–(water)n (n = 2–4) clusters, and a transition from two‐dimensional cyclic to three‐dimensional structures occurs at n = 5. At the same time, the cluster stability seems to correlate with the number of primary hydrogen bonds, because the secondary hydrogen bond was extremely weaker than the primary hydrogen bond. Furthermore, the comparison of cooperative effects between ethanol–water clusters and gas phase pure water clusters has been analyzed from two aspects. First of all, for the cyclic structure, the cooperative effect in the former is slightly stronger than that of the latter with the increasing of water molecules. Second, for the ethanol–(water)5 and (water)6 structure, the cooperative effect in the former is also correspondingly stronger than that of the latter except for the ethanol–(water)5 book structure. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Exohedral derivatives of the smallest fullerene, C20, with the general formula of C20Xn (X = H, F, Cl; n = 1–4) have been systematically investigated to evaluate the energetic stability of these molecular structures and determine their respective electronic properties. Analysis of the theoretical results indicate that the addition of exohedral atoms increase the stability of the caged‐structure to varying degrees according to the predicted HOMO‐LUMO gaps, ionization energies, and electron affinities. Further support for increasing stability is deduced from the calculated reaction and binding energies of the exohedral atoms. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号