首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxic metal (Cd2+, Hg2+, Pb2+, and Ag+) complexes with the tetradentate macrocyclic ligand - cyclen (1,4,7,10-tetraazacyclododecane, [12]aneN4, L) were prepared and studied in the solid state by IR, X-ray diffraction, elemental and thermal analysis. Diffraction results have yielded three molecular structures, [Cd([12]ane-κ4N1,4,7,10)(NO3)2)] (1), [Hg([12]ane-κ4N1,4,7,10)(NO3-κ2O,O`)]NO3 (2), [Pb2([12]ane-κ4N1,4,7,10)2][Pb(NO3)6] (3) and one polymeric structure {[Ag2([12]ane-κ3N1,4,7)(μ2-[12]aneN10)](NO3)2?2H2O)}n (4) featuring a unique coordination mode not observed before with cyclen as a ligand. The monodentate (1) and chelate (with small bite angle 50.3(3)°, (2) coordination modes of nitrate ligands were confirmed. Stereochemically active 6s2 lone pair was suggested in 3 and DFT results confirmed no significant metal–metal covalent bond. The stability constants of the complexes with Cd2+ and Pb2+ ions were determined by potentiometric methods in aqueous solutions. Additionally, the structures of complexes in solution were observed by 1H NMR. Both methods confirm similar cyclen complexing properties toward Zn2+ biometal and Cd2+, Pb2+ toxic metals.  相似文献   

2.
The new ligand, [Fc(cyclen)2] ( 5 ) (Fc=ferrocene, cyclen=1,4,7,10‐tetraazacyclododecane), and corresponding ZnII complex receptor, [Fc{Zn(cyclen)(CH3OH)}2](ClO4)4 ( 1 ), consisting of a ferrocene moiety bearing one ZnII‐cyclen complex on each cyclopentadienyl ring, have been designed and prepared through a multi‐step synthesis. Significant shifts in the 1H NMR signals of the ferrocenyl group, cf. ferrocene and a previously reported [Fc{Zn(cyclen)}]2+ derivative, indicated that the two ZnII‐cyclen units in 1 significantly affect the electronic properties of the cyclopentadienyl rings. The X‐ray crystal structure shows that the two positively charged ZnII‐cyclen complexes are arranged in a trans like configuration, with respect to the ferrocene bridging unit, presumably to minimise electrostatic repulsion. Both 5 and 1 can be oxidized in 1:4 CH2Cl2/CH3CN and Tris‐HCl aqueous buffer solution under conditions of cyclic voltammetry to give a well defined ferrocene‐centred (Fc0/+) process. Importantly, 1 is a highly selective electrochemical sensor of thymidilyl(3′‐5′)thymidine (TpT) relative to other nucleobases and nucleotides in Tris‐HCl buffer solution (pH 7.4). The electrochemical selectivity, detected as a shift in reversible potential of the Fc0/+ component, is postulated to result from a change in the configuration of bis(ZnII‐cyclen) units from a trans to a cis state. This is caused by the strong 1:1 binding of the two deprotonated thymine groups in TpT to different ZnII centres of receptor 1 . UV‐visible spectrophotometric titrations confirmed the 1:1 stoichiometry for the 1 :TpT adduct and allowed the determination of the apparent formation constant of 0.89±0.10×106 M ?1 at pH 7.4.  相似文献   

3.
Bis(2‐thienyl)diketopyrrolopyrrole with two ZnII‐cyclens (ZnCyc‐DPP) was designed and synthesized to evaluate the selective binding of ZnII‐cyclen with thymine base in single‐strand DNA as a tool for the construction of a highly ordered multichromophore system on DNAs. Through UV/Vis titrations, gel filtration chromatography, and circular dichroism spectroscopy, ZnCyc‐DPP formed J‐type DPP aggregates with oligo‐dTn DNAs. The DPP aggregates absorbed on a gold electrode exhibited good photocurrent responses. The present results show that binding ZnII‐cyclen–chromophore conjugates and thymine bases together is a powerful tool for preparing DNA‐templated multichromophoric systems with specific functions.  相似文献   

4.
Summary The spectrochemical, electrochemical and electrocatalytic properties of Co[15]aneN4 ([15]aneN4 = 1,4,8,12-tetraazacyclopentadecane) have been investigated. The results show that, in aqueous solution, this compound mainly exists as three species whose axial coordination positions are occupied by water and/or hydroxy ligands; it is marginal whether other substrates such as Cl and NO inf3 sup– interact with the central ion in acid-base solutions. The approximate Pourbaix diagram of CoIII/II[15]ane N4 was determined. There is an electrochemically-induced isomerization between two trans conformational isomers of the Co[15]aneN4 complexes in acid and netural solutions. The Co[15]aneN4 complex has electrocatalytic properties for reduction of nitrate and nitrite only in strong alkaline solution.  相似文献   

5.
Summary Dissolved SO2 reacts rapidly with [Co([16]aneN5)OH]2+ to give [Co([16]aneN5OSO2]+([16]aneN5=1,4,7,10, 13-penta-azacyclohexadecane), which on immediate acidification loses SO2 to give [Co([16]aneN5)OH2]3+. The O-bonded sulphito complex (max 526 nm) undergoes a slow linkage isomerisation to give the S-bonded species [Co([16]aneN5)SO3]+ (max 466 nm), rather than an internal redox reaction. The S-bonded complex has been isolated and characterised as the perchlorate salt [Co([16]aneN5) (SO3H)](ClO4)2.  相似文献   

6.
《Polyhedron》1999,18(26):3451-3460
The 12-membered macrocyclic ligand 1-thia-4,7,10-triazacyclododecane ([12]aneN3S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN3S–CO2·H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN3S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN3O) and 1,4,7,10-tetraazacyclododecane ([12]aneN4). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN4)]2+ complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN3S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN3S)(H2O)](ClO4)2 and [Cu2([12]aneN3S)2(OH)2](ClO4)2 were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M–N bond lengths in the range 2.00–2.25 Å whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN3S)(NO3)]+ complex is also explained by the calculations.  相似文献   

7.
We previously reported that chiral Zn2+ complexes that were designed to mimic the actions of class‐I and class‐II aldolases catalyzed the enantioselective aldol reactions of acetone and its analogues thereof with benzaldehyde derivatives. Herein, we report the synthesis of new chiral Zn2+ complexes that contain Zn2+? tetraazacyclododecane (Zn2+? [12]aneN4) moieties and amino acids that contain aliphatic, aromatic, anionic, cationic, and dipeptide side chains. The chemical and optical yields of the aldol reaction were improved (up to 96 % ee) by using ZnL complexes of L ‐decanylglycyl‐pendant [12]aneN4 (L ‐ZnL7), L ‐naphthylalanyl‐pendant [12]aneN4 (L ‐ZnL10), L ‐biphenylalanyl‐pendant [12]aneN4 (L ‐ZnL11), and L ‐phenylethylglycyl‐pendant [12]aneN4 ligands (L ‐ZnL12). UV/Vis and circular dichroism (CD) titrations of acetylacetone (acac) with ZnL complexes confirmed that a ZnL? (acac)? complex was exclusively formed and not the enaminone of ZnL and acac, as we had previously proposed. Moreover, the results of stopped‐flow experiments indicated that the complexation of (acac)? with ZnL was complete within milliseconds, whereas the formation of an enaminone required several hours. X‐ray crystal‐structure analysis of L ‐ZnL10 and the ZnL complex of L ‐diphenylalanyl‐pendant [12]aneN4 (L ‐ZnL13) shows that the NH2 groups of the amino‐acid side chains of these ligands are coordinated to the Zn2+ center as the fourth coordination site, in addition to three nitrogen atoms of the [12]aneN4 rings. The reaction mechanism of these aldol reactions is discussed and some corrections are made to our previous mechanistic hypothesis.  相似文献   

8.
Coordination equilibrium constants (K NiS) of some donor solvent molecules to 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecanenickel(II) ([Ni(Me4[12]aneN4)]2+) were determined in nitrobenzene (a noncoordinating bulk solvent). The first (K NiS1) and second stepwise coordination equilibrium constants (K NiS2) for 1,4,7,10-tetraazacyclododecanenickel(II) ([Ni([12]aneN4)]2+), 1,4,8,11-tetraazac yclotetradecane- nickel(II) ([Ni([14] aneN4)]2+), 1,4,8,11-tetrathiacyclotetra-decanenickel(II) ([Ni([14]aneS4)]2+) were also reinvestigated. The K NiS values for [Ni(Me4[12]aneN4)]2+ were compared to those of [Ni([12]aneN4)]2+, (1R,4S, 8R,11S)-1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecanenickel(II) (R,S,R,S-[Ni(Me4[14]aneN4)]2+), R,R,S,S-[Ni(Me4[14]aneN4)]2+, [Ni([14]aneN4)]2+, and [Ni([14]aneS4)]2+. Coordination of pyridine (Py), N,N,N′,N′-tetramethylurea (TMU), and N,N-dimethylacetamide (DMA) to [Ni(Me4[12]aneN4)]2+ was observed, although these donor solvent molecules did not coordinate to R,S,R,S-[Ni(Me4[14]aneN4)]2+. The K NiS values for Py, TMU, and DMA are 7.9, 2.8, and 9.0 dm3⋅mol−1, respectively. Some hydrogen-bonding waters were coordinated to R,S,R,S-[Ni(Me4[14]aneN4)]2+, but such waters did not coordinate to [Ni(Me4[12] aneN4)]2+. Also, the K NiS2 values were larger than the corresponding K NiS1 values for [Ni([14]aneS4)]2+. Furthermore, the K NiS1 values for [Ni([12]aneN4)]2+ were the largest among these nickel(II) complex cations. The K NiS, K NiS1, and K NiS2 values are discussed in terms of properties of the donor solvents and steric strains of these nickel(II) complex cations.  相似文献   

9.
Two kinds of cyclodextrin/peptide (CD/peptide) hybrids bearing ZnII‐cyclen or cyclen, dansyl and β‐cyclodextrin (β‐CD) units have been synthesized as chemosensors for organic anionic molecules. ZnII‐cyclen serves as a ligand site and β‐CD is a receptor site for guest molecules, while the dansyl unit acts as a fluorescent probe. Examination of the fluorescence behaviors of these CD/peptides suggest that the hybrid containing Zn2+ has larger binding constants with respect to anionic molecules than that without Zn2+.

  相似文献   


10.
The new zinc ternary complexes [Zn(cyclen)NO3]ClO4 (I), [Zn2(cyclen)2(m-nic)](ClO4)3 (II), [Zn2(cyclen)2(m-pic)](ClO4)3 (III) (cyclen=1,4,7,10-tetraazacyclododecane; nic=nicotinic acid; pic=picolinic acid) were synthesized and their spectral and thermal properties were investigated. The compounds were characterized by elemental analysis, IR spectroscopy and TG/DTG, DTA methods. Moreover, the way of coordination of pyridinecarboxylate anions was proposed on the basis of the spectral data and consequently proved with results of X-ray structure analysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Previous studies into the dissociation of [CuII(dien)peptide] . 2+ ions (dien = diethylenetriamine) have shown that NH‐containing auxiliary ligands do not favor the formation of [peptide] . + species; instead, they promote proton‐transfer reactions, especially for peptides containing basic amino residues. Formation of radical cationic tripeptides of the form GGX . + [GGX = glycylglycyl(residue X)] becomes feasible upon substituting the open‐chain tridentate ligand dien with its analogous cyclic ligand, 1,4,7‐triazacyclononane (9‐aneN3); i.e., from [CuII(9‐aneN3)GGX] . 2+ ions. Similar enhancements occur when using 1,4,7,10‐tetraoxacyclododecane (12‐crown‐4) in place of its open‐chain analog, 2,5,8,11‐tetraoxadecane (triglyme). We have demonstrated that a sterically encumbered auxiliary macrocyclic ligand within [CuII(L)GGX] . 2+ complex ions [where L = 9‐aneN3 or 12‐crown‐4] facilitates the formation of radical cationic peptides through gas‐phase fragmentation. We verified our experimental observations by examining the reactivities of a series of 19 tripeptides of the type GGX that differ only in the identity of their C‐terminal residue. The energy of the electron‐transfer reaction correlates well with the bond‐dissociation energy of the peptide–Cu(II) interaction; the presence of a constrained macrocyclic ligand weakens metal–peptide chelation through steric repulsion between the ligand and the peptide, and this situation may lead to more favorable radical cationic peptide formation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of a new ligand (L1) containing two 1,4,7‐triazacyclononane ([9]aneN3) moieties linked by a 4,5‐dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+, Zn2+, Cd2+, and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6′′‐dimethylen‐2,2′:6′,2′′‐terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.  相似文献   

13.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

14.
The hexadentate ligands 1,4,7,12,15,18-hexaazacyclododecosane ([2]aneN6) and 1,4,7,14,17,20-hexaazacyclohexacosane ([26]aneN6) both form eight complexes with Cu2+, three of them being binuclear. The corresponding stability constants have been determined potentiometrically, and the electronic absorption spectra have been obtained from spectrophotometric data. Possible interactions of the Cu2+ pairs in the three binuclear complexes have, in addition, been investigated by ESR and and linear -sweep voltammetry (LSV). The binuclear complex of [22]aneN6 with one addditional OH group is exceptionally stable, ESR-silent, and the results of the LSV-experiments are characteristically different from those of the other binuclear complexes with both ligands. This indicates that [22]aneN6 forms a very stable hydroxo-bridged binuclear Cu2+ complex Cu2L(OH)3+, whereas in the case of [26]andN6 no bridged Cu2+ pair exists.  相似文献   

15.
The nitrosyl ruthenium complex, trans-[RuCl([15]aneN4)NO](PF6)2, ([15]aneN4?=?1,4,8,12-tetraazacyclopentadecane), exhibits vasorelaxation characteristics attributed to its nitric oxide release properties. The observed in vitro and in vivo vasodilation is dependent on noradrenaline concentration. We report here the chemical mechanism of the reaction between noradrenaline and trans-[RuCl([15]aneN4)NO](PF6)2 in aqueous phosphate buffer solution at pH 7.40. NO measurement by NO-sensor electrode, cyclic voltammetry, 31PNMR and HPLC analysis were used to investigate the reduction process as the fundamental step for NO release characteristic of trans-[RuCl([15]aneN4)NO](PF6)2. A supramolecular species containing HPO4 2? as a bridging group between noradrenaline and trans-[RuCl([15]aneN4)NO](PF6)2 is suggested as an intermediate prior to the reduction of the nitrosyl ruthenium complex.  相似文献   

16.
A series of Co(II) tetraoxodithiatetraaza macrocyclic complexes ([18]aneN4S2, [20]aneN4S2, Bzo2[18]aneN4S2 and Bzo2[20]aneN4S2) have been encapsulated in the nanopores of zeolite Y by template condensation reaction. Co(II) complexes with tetraoxodithiatetraaza macrocyclic ligand were entrapped in the nanopores of zeolite Y by a two-steps process in the liquid phase: (i) ion-exchange of [bis(diamine)cobalt(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); [Co(N–N)2]2+–NaY; in the nano-cavity of the zeolite, and (ii) in situ template condensation of the cobalt(II) precursor complex with thiodiglycolic acid. The mode of bonding and overall geometry of the complexes and new host/guest nanocomposite materials ([Co([18]aneN4S2)]2+–NaY, [Co([20]aneN4S2)]2+–NaY, [Co(Bzo2[18]aneN4S2)]2+–NaY, [Co(Bzo2[20]aneN4S2)2+–NaY) has been inferred through FT-IR, DRS and UV–Vis spectroscopic techniques, BET technique, molar conductance and magnetic moment data, XRD and elemental analysis, as well as nitrogen adsorption. The average number of encapsulated Co complexes per nano-cavity was determined to be 0.33 for the Co complexes–NaY. An octahedral geometry around the cobalt(II) ion is suggested for the complexes and new host/guest nanocomposite materials.  相似文献   

17.
Nickel(II) complexes with six co-ordinate tetraoxo dithia tetraaza macrocyclic ligands derived from diamine and which provide a N4S2 co-ordination sphere, [18]aneN4S2: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]aneN4S2: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane, Bzo2[18]aneN4S2: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]aneN4S2: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane, were entrapped in the nanopores of zeolite NaY by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)nickel(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); [Ni(N–N)2]2+-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the nickel(II) precursor complex with thiodiglycolic acid. The mode of bonding and overall geometry of the complexes and new host/guest nanocomposite materials ([Ni([18]aneN4S2)]2+-NaY, [Ni([20]aneN4S2)]2+-NaY, [Ni(Bzo2[18]aneN4S2)]2+-NaY, [Ni(Bzo2[20]aneN4S2)2+-NaY) has been inferred through FT-IR, DRS and UV–vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and elemental analysis, as well as nitrogen adsorption. An octahedral geometry around the nickel(II) ion is suggested for the complexes and new host/guest nanocomposite materials.  相似文献   

18.
We previously reported on enantioselective aldol reactions of acetone and some aldehydes catalyzed by chiral Zn2+ complexes of L ‐prolyl‐pendant [12]aneN4 (L ‐ZnL1) and L ‐valyl‐pendant [12]aneN4 (L ‐ZnL2) in aqueous solution. Here, we report on the one‐pot chemoenzymatic synthesis of chiral 1,3‐diols in an aqueous solvent system at room temperature by a combination of enantioselective aldol reactions catalyzed by Zn2+ complexes of L ‐ and D ‐phenylalanyl‐pendant [12]aneN4 (L ‐ZnL3 and D ‐ZnL3) and the successive enantioselective reduction of the aldol products using oxidoreductases with the regeneration of the NADH (reduced form of nicotinamine adenine dinucleotide) cofactor. The findings indicate that all four stereoisomers of 1,3‐diols can be produced by appropriate selection of a chiral Zn2+‐complex and an oxidoreductase commercially available from the “Chiralscreen OH” kit.  相似文献   

19.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

20.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号