首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The solubilities of pentane, 2-methylbutane (isopentane) and cyclopentane were measured in liquid nitrogen at 77.4 K by the filtration method. The solubilities of the C5 hydrocarbons in liquid nitrogen at 77.4 K vary from 1.8×10–8 mole fraction for cyclopentane, to 3.0×10–8 mole fraction for pentane and 3.2×10–7 mole fraction for 2-metylbutane. Correlations between the solubilities of alkanes, alkenes and cyclic hydrocarbons in liquid nitrogen, and some properties of solutes [normal boiling point T b , enthalpy of vaporization at normal boiling point H b and the mean of the enthalpy of vaporization and the enthalpy of melting [(H b +H m )/2] are presented.  相似文献   

6.
The solubilities of 1-pentene ice in liquid nitrogen at a temperature of 77.4 K and in liquid argon at 87.3 K have been measured by the filtration method. The 1-pentene content in solution was determined using gas chromatography. The experimental value of the mole fraction solubility of 1-pentene ice in liquid nitrogen at 77.4 K is: (1.28±0.25)×10–7 and (4.11±0.44)×10–7 in liquid argon at 87.3 K. The Preston–Prausnitz method was used for calculation of the solubilities of 1-pentene ice in liquid nitrogen in the temperature range 64.0–90.0 K and in liquid argon in the temperature range 84.0–90.0 K. The parameters l 12 were also calculated. At 90.0 K liquid argon is the better solvent for 1-pentene ice than is liquid nitrogen.  相似文献   

7.
8.
9.
The solvus lines of the PbTe and Ag2Te phases in the pseudo-binary PbTe-Ag2Te system have been determined using diffusion couples and unidirectional solidification by the Bridgman method. The solubilities of both Ag2Te in PbTe and PbTe in Ag2Te decrease with decrease in temperature. For the former, this change is from 14.9 at% Ag (694 °C) to 0.5 at% Ag (375 °C), while for the latter it is from 12.4 at% Pb (650 °C) to 3.1 at% Pb (375 °C). The decrease in solubilities leads to the formation of precipitates of Ag2Te in PbTe and PbTe in Ag2Te. In particular, fast atomic diffusion in Ag2Te results in the precipitation of PbTe even in quenched samples. From the temperature dependence of these solubilities, heats of solution have been determined. In the diffusion couple, the phase boundary moves toward PbTe. In the region between the phase boundary and the initial interface, PbTe transforms to β-Ag2Te (cubic) retaining the cube-on-cube orientation relationship.  相似文献   

10.
The solubility and the protolytic constants of 1-(2-pyridylazo)-2-naphthol (PAN) have been accurately determined at temperatures between 20.0 and 30.0°C in ethanol–water solutions with ethanol concentrations ranging from 10.0% to 95.0% (v/v). The measurement of the protolytic constants is based on the spectrophotometric determination of the concentrations of the corresponding conjugate acid–base pairs in ethanol–water solutions containing PAN and hydrochloric acid or sodium hydroxide. The traditionally used pH measurements in such studies in non-aqueous solutions are thus avoided. The solubility and the protolytic constants of PAN in pure water have been calculated by extrapolating the ethanol–water results to pure water where PAN is practically insoluble. The determination of the thermodynamic data mentioned above is necessary for elucidating the interactions of PAN with various metal ions in solutions and in cation-exchange membranes (e.g., Nafion®) used as PAN-based optodes.  相似文献   

11.
The solubilities of solid pentane, 2-methylbutane (isopentane), and cyclopentane in liquid argon at 87.3 K have been measured by the filtration method. The C5 hydrocarbon content in solution was determined using gas chromatography. The solubilities of the C5 hydrocarbons in liquid argon at 87.3K vary from 0.61 × 10–7 mole fraction for cyclopentane, to 1.37 × 10–7 mole fraction for pentane, and 8.83 × 10–6 mole fraction for 2-methylbutane. The Preston–Prausnitz method was used for calculation of the solubilities of solid C5 hydrocarbons in liquid argon in the temperature range 84–110 K and in liquid nitrogen in the range 64–90K. The values of the solvent–solute interaction constant l 12 were also calculated.  相似文献   

12.
《印度化学会志》2023,100(3):100934
Investigation upon the solid–liquid equilibrium on solubility data of 6-propyl-2-thiouracil (PLT) in pure organic solvents is essential for separation and purifying in industry process. In this work, PLT solubility in nine neat solvents was experimentally determined at 278.15 K–323.15 K under P = 0.1 MPa. These selected solvents were tetrahydrofuran(THF), acetone, acetonitrile,1-butanol,1-pentanol, 2-butanol, methyl acetate, ethyl acetate,1-propyl acetate, respectively. Experiment results showed that solubility was consistent with temperature and decreased according to the order: THF > acetone>1-butanol≈1-pentanol> 2-butanol > methyl acetate > ethyl acetate>1-propyl acetate > acetonitrile. Solvent effect and Hansen solubility parameter (HSP) were incited to explain dissolution rule on solute. Four thermodynamic models (modi?ed Apelblat model, Van't model, λh model and NRTL model) were adopted to correlate PLT solubility and provide good correlations on basis of RD, ARD and RMSD. In addition, thermodynamic properties (ΔH°, ΔS° and ΔG°) of PLT dissolution process in pure solvents were discussed and proved to be endothermic, entropically driven and non-spontaneous process.  相似文献   

13.
The dextran/solvent system was employed for the evaluation of the parameters and various molecular contributions on the basis of solubility parameter with regard to the theoretical methods of Hoy and Van Krevelen-Hoftyzer pair. The theoretical magnitudes correlated quite well with the experimental values determined previously for the same system. The Δδ value predicted as ?5 for various systems previously, appeared to be >5 for the dextran/solvent systems obtained from the diagrams plotted using several solubility parameter components. An order with respect to the solvent has been proposed with regard to the distance of the solubility parameter components of the solvent from the center of the circle for which, water does not seem to be a good solvent for the system under study since it remains outside the circle of those diagrams.  相似文献   

14.
The solubility of lithium bromide and lithium nitrate in solvents methanol, ethanol, 1-propanol, 2-propanol and 1-butanol were measured in the range between 298.15 and 338.15 K using an analytical gravimetric method. An empirical equation was used to fit the experimental solubilities and the Pitzer model with inclusion of Archer's ionic strength was used for the calculation of osmotic coefficients. The experimental data of system pressures (p) for the correlation of LiBr + ethanol, LiBr + 2-propanol at T (298.15-333.15 K) and LiNO3 + ethanol at T (298.15-323.15 K) were obtained from published literatures. Moreover, the parameters of the Pitzer model were re-correlated and were used to predict mean ion activity coefficients. A procedure was also presented to predict the solubility products of salts in pure organic solvent.  相似文献   

15.
16.
The solubilities of potassium fluoride, chloride, and bromide in ethanol, formamide, and N-methylformamide and in binary mixtures of these solvents were determined at 25°C. The standard molar Gibbs energies of solution, Δsoln G o, in the neat solvents were related to their hydrogen bonding abilities. The values of Δsoln G o in the mixtures were fitted with expressions of the quasilattice quasichemical theory, and the preferential solvation of the ions was thereby established.  相似文献   

17.
The solubilities of solid 1-hexyne in liquid argon at 87.3 and in liquid nitrogen at 77.4 K have been measured by the filtration method. The hydrocarbon contents in solutions were determined using gas chromatography. GC–MS was used to identify impurities in 1-hexyne. The experimental value of the mole fraction solubility of solid 1-hexyne in liquid argon at 87.3 K is (0.85 ± 0.19) × 10–7 and (1.25 ± 0.08) × 10–8 in liquid nitrogen at 77.4 K. The Preston–Prausnitz method was used for calculation of the solubilities of solid hydrocarbon in liquid argon in the temperature range 84.0–110.0 K and in liquid nitrogen from 64.0 to 90.0 K. The solvent–solute interaction parameters l 12 were also calculated. At 90.0 K liquid argon is a better solvent for solid 1-hexyne than is liquid nitrogen.  相似文献   

18.
The solubilities of potassium fluoride, chloride, and bromide in acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide and in binary mixtures of these solvents were determined at 25°C. The standard molar Gibbs free energies of solution, solnG°, in the neat solvents were related to the polarizabilities and basicities of the anions and the dipole moments and acidities of the solvents. The values of solnG° in the mixtures were fitted by expressions from the quasi-lattice quasi-chemical theory. The mean number of each kind of solvent in the nearest environment of the ions was obtained from these results.  相似文献   

19.
Summary. The solubility of water in 1-hexanol, 1-octanol, 1-decanol, and cyclohexanol was determined as a function of water activity by the isopiestic method at 298.2K. The solubility of water in the alcohol was expressed by a Setchenov type of equation and the correlation coefficients were related to the virial coefficients of the McMillan-Mayer theory of solution. From the solubility data both the activities and the osmotic coefficients of the alcohols were calculated. The Henrys law constants for the solubility of water in the alcohols are given. They depend linearly on the Gibbs energy of hydration. The excess Gibbs energy of mixing of water and alcohols is positive as a consequence of the strong intermolecular interactions of the two pure components of the mixture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号