首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-chain branching can occur during radical polymerization and is especially important for polyethylene. An improved method of calculating the effect of long-chain branching on molecular weight distribution is presented. This method uses a probability treatment. The results are more consistent with both kinetic theory and experimental data than the results of previous long-chain branching calculations. In contrast to previous calculations, the present work shows that generation cannot occur from long-chain branching alone.  相似文献   

2.
Abstract

Poly(phenylene sulfide), made via the melt polymerization of p-diiodobenzene and sulfur, has been prepared with added branching species at levels up to 1.0 mol%. Effects of increasing branching on the thermal characteristics were seen to be quite large for even 0.25 mol% brancher. Both the Tm and the apparent rate of crystallization, as judged by the undercooling for melt crystallization, Tm minus the crystallization upon cooling from the melt, decreased rapidly with increasing brancher level. Melt rheology also confirmed the large increase in melt elasticity in this system with increasing branching level, even at the moderate melt viscosities of the polymers of this work. Melt elasticity for polymers with 0.5 mol% brancher or above was sufficiently high to preclude rheological testing.  相似文献   

3.
The branching stemming from midchain radical formation in n‐butyl acrylate polymerization is investigated via melt‐state 13C NMR measurements. The dependence of the degree of branching (DB) on the monomer conversion of the system is examined for photoinduced polymerizations, revealing a steady increase in branching with conversion. For polymerization at moderate light intensities, an increase in branching from 0.03% to 0.37% is observed for polymerizations at 60 °C, which is fivefold below the level of branching observed in thermally initiated poly­merizations under otherwise identical reaction conditions. The reason for this overall reduction in branching remains momentarily unclear; yet, a strong dependence of branching on light intensity is observed. While polymerization under a 1 W LED lamp results at almost full monomer conversion in branching degrees of 0.22%, polymerization under a 400 W lamp yields 1.81% of chain branches.

  相似文献   


4.
Degree of branching in PVC as a function of its temperature of polymerization has been determined by the catalytic hydrogenation (LiAlH4) of the polymer followed by IR measurements. The samples used were prepared at 55, 90, 130, and 160°C. A branching calibration curve (ACH3 /ACH2 vs CH3/CH2) was established for linear hydrocarbons, and was found to follow the relation, ACH3/ACH2 = 20(CH3 /CH2). This equation was used to characterize the branching indices of PVC samples studied. Branching values in units of 100(CH3 /CH2) were as follows: 55°C (1.92), 90°C (1.95), 130°C (2.61), and 160°C (2.96). These results are in agreement with the theoretical prediction that the degree of branching in PVC should decrease with the lowering of its temperature of polymerization because the energy of activation for the propagation step is smaller than that for chain the transfer step.  相似文献   

5.

Polyethylene/polyvinyl chloride (PE/PVC) hybrids were successfully prepared by a polymerization‐filling method. The catalyst for ethylene polymerization was supported on PVC particles, and ethylene was then polymerized in‐situ on the surface of the activated PVC. PVC particles could be well segmented and dispersed during in‐situ polymerization, and the prepared hybrids had an additional tangent peak between the glass transitions of polyethylene and PVC, indicating the formation of a compatible interlayer between nascent polyethylene and PVC during polymerization.  相似文献   

6.
The branching corrected surface hopping (BCSH) has been demonstrated as a robust approach to improve the performance of the traditional fewest switches surface hopping (FSSH) for nonadiabatic dynamics simulations of standard scattering problems [J. Chem. Phys. 150 , 164101 (2019)]. Here, we study how reliable populations of both adiabatic and diabatic states can be interpreted from BCSH trajectories. Using exact quantum solutions and FSSH results as references, we investigate a series of one-dimensional two-level scattering models and illustrate that excellent time-dependent populations can be obtained by BCSH. Especially, we show that different trajectory analysis strategies produce noticeable differences in different representations. Namely, the method based on active states performs better to get populations of adiabatic states, while the method based on wavefunctions produces more reliable results for populations of diabatic states.  相似文献   

7.
A viscometric determination of the degree of branching γ, of poly(methyl methacrylate) obtained by anionic polymerization proved the reaction of the growing center of poly(methyl methacrylate) with the ester group of another polymer molecule, accompanied by the formation of a trifunctional branch point. This reaction occurs if the solution polymerization of methyl methacrylate is initiated: (1) with butyllithium at ?78°C only on attaining 100% conversion and after a long time or at +20°C immediately after the polymerization has set in; (2) with lithium tert-butoxide at +20°C after a long time. The degree of branching of poly(methyl methacrylates) obtained under similar conditions in the presence of tetrahydrofuran reaches higher values than for polymers prepared in toluene. The tacticity of polymers does not affect the experimentally determined γ values.  相似文献   

8.
Hyperbranched polymethacrylates were synthesized by green-light-induced atom transfer radical polymerization (ATRP) under biologically relevant conditions in the open air. Sodium 2-bromoacrylate (SBA) was prepared in situ from commercially available 2-bromoacrylic acid and used as a water-soluble inibramer to induce branching during the copolymerization of methacrylate monomers. As a result, well-defined branched polymethacrylates were obtained in less than 30 min with predetermined molecular weights (36 000<Mn<170 000), tunable degree of branching, and low dispersity values (1.14≤Đ≤1.33). Moreover, the use of SBA inibramer enabled the synthesis of bioconjugates with a well-controlled branched architecture.  相似文献   

9.
Abstract

The behaviour of polydisperse branched copolymers of methyl methacrylate with a small amount of randomly situated tetrafunctional ethylenedimethacrylate units was investigated by means of size exclusion chromatography (SEC). A procedure has been suggested for the conversion of apparent values of molecular parameters of real polymer branched systems (Mn, app; Mw, app obtained from SEC data by calibration of the separation system using a linear polymer) into actual values. This was made possible by off-line coupling of SEC and viscometry. The branching was characterized by the weight average number of branching sites in the macro-molecule, mw, and the branching index, y.  相似文献   

10.
在引发剂过氧化二异丙苯、二官能度单体新戊二醇二丙烯酸酯和自由基活性调控剂二甲基二硫代氨基甲酸锌的存在下,使高密度聚乙烯进行熔融支化反应.研究表明,转矩曲线上的反应峰顶对应最佳反应时间,由此获得了凝胶量低的长链支化高密度聚乙烯.熔融支化反应使聚乙烯的分子量分布变宽,其支化程度随单体含量的增加而增大,呈现出更加明显的剪切变稀行为;长链支化结构的引入使改性聚乙烯的结晶度降低,长支链的成核作用使起始结晶温度增加,球晶尺寸明显减小.改性聚乙烯的支化程度和大分子拓扑结构的变化对耐环境应力开裂性能的影响显著,当单体含量超过0.6 phr时,长链支化分子形态从类似不对称星形转变为梳形,使得高密度聚乙烯的耐环境应力开裂时间产生突变,达1000 h以上,同时强度、模量和冲击韧性均得到明显提高.  相似文献   

11.
Summary: Molecular weight and short chain branching (SCB) data experimentally obtained by SEC-FTIR are combined into a single, primary structural parameter (PSP2) and used to rapidly screen the slow crack growth resistance of a variety of polyethylene resins. Our results show that PSP2 values obtained for resins made using different catalysts (both dual and single catalyst systems) and hence, different polymer architectures, correlate well with results obtained from several short-term tensile tests. The development of PSP2, as well as the qualitative and quantitative predictive ability of this parameter are presented and discussed.  相似文献   

12.
Acrylic monomers undergo chain transfer to polymer during polymerization leading to branched and even gelled polymers. It has been experimentally demonstrated that the extent of branching is higher for conventional free radical polymerization than for controlled radical polymerization (ATRP, RAFT, NMP) and this has been qualitatively explained in terms of the differences in the concentrations of highly reactive short‐chain radicals between controlled and conventional radical polymerizations. Contrary to this explanation, in this work, it is quantitatively demonstrated that the short transient lifetime of the radicals, i.e., the time between activation and deactivation of the radical in controlled radical polymerization, is the cause for the low level of branching in these polymerizations.

  相似文献   


13.
Advanced homo‐ and copolymerization models have been used to perform a feasibility study on the potential of pulse‐initiated polymerization (PIP) experiments for ethene (co)polymerizations. An application of PIP experiments directly to the ethene homo‐polymerization appears not as a very promising strategy to derive the homo‐propagation rate coefficient kp of ethene. This failure can be attributed to the special characteristics of high temperature size exclusion chromatographs, being required to determine the molecular weight distribution (MWD) of polyethylene. PI copolymerizations appear as an interesting alternative to provide access to the homo‐propagation rate coefficient of ethene. Most advantageous in this strategy is the fact that even a simple convergence contemplation (using a variation in monomer composition) yields the ethene homo‐propagation rate coefficient kp. Simply aiming at this coefficient, there is no necessity of knowing the detailed kinetic parameters of the copolymerization. In a further part, the extended kinetic information being available about branching processes in ethene polymerizations was used to test for the potential influence of a slower propagation rate of secondary macroradicals on the PIP structure in MWDs. Even at the significant level of branching present in ethene homopolymerizations still a PIP structure inside the MWD remains observable, assuming retardation up to an extend of almost two orders of magnitude. In order to perform these studies a kinetic model was designed explicitly accounting for the formation of secondary macroradicals by transfer. The kinetic information about branching being available in literature was adopted toward this scheme.  相似文献   

14.
Data on ethylene polymerization over supported LFeCl2/MgCl2 catalysts {L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl]pyridyl} containing AlR3 (R = Me, Et, i‐Bu, or n‐Oct) as an activator are presented. These catalysts are highly active (100–300 kg of polyethylene/g of Fe h bar of C2H4) and stable in ethylene polymerization at 70–80 °C. Data on the effects of the iron content, AlR3 type, Al(i‐Bu)3 concentration, and hydrogen presence on the catalyst activity are presented. The molecular structure of polyethylene produced with these catalysts (including the molecular masses, molecular mass distribution, branching, and number of C?C bonds) has been studied; data on the effects of AlR3 and hydrogen on the molecular structure are presented. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2128–2133, 2005  相似文献   

15.
Branched polyethylene was synthesized in heptane used as a polymerization medium with monotitanocene catalyst composed of η5‐pentamethylcyclopentadienyl tribenzyloxy titanium and modified methylaluminoxane (mMAO) that contained different amounts of residual trimethylaluminum (TMA). The residual TMA more strongly reduced Ti(IV) complexes to Ti(III) and Ti(II) ones, and Ti(IV) active species were suggested to be more effective for ethylene polymerization. Influences of the polymerization temperature and Al/Ti molar ratio on the catalytic activity and the degree of branching, branch length, and molecular weight of polyethylene were investigated. The obtained polymers were confirmed by 13C NMR to be higher molecular weight polyethylene containing significant amounts of isolated ethyl branches, butyl branches, or both. Branched polyethylene was prepared by the in situ copolymerization of ethylene with 1‐butene and 1‐hexene, which were formed through a proposed mechanism including metallcycloheptane and metallcyclopentane intermediates of Ti(II) species that were produced by the reaction of Ti(IV) complexes with TMA coexisting in mMAO. There was a remarkable increase in the chance of 1‐butene being produced from metallcyclopentane of Ti(II) intermediates with an increase in the polymerization temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4258–4263, 2000  相似文献   

16.
Three different long‐chain branch (LCB) formation mechanisms for ethylene polymerization with metallocenes in solution polymerization semi‐batch and continuous stirred‐tank reactors are modeled to predict the microstructure of the resulting polymer. The three mechanisms are terminal branching, C–H bond activation, and intramolecular random incorporation. Selected polymerization parameters are varied to observe how each mechanism affects polymer microstructure. Increasing the ethylene concentration during semi‐batch polymerization reduces the LCB frequency of polymers made with the terminal branching and intramolecular mechanisms, but has no effect on those made with the C–H bond activation mechanism, which disagrees with most previous data published in the literature. The intramolecular mechanism predicts that LCB frequencies hardly depend on polymerization time or ethylene conversion, which also disagrees with the published experimental data for these systems. For continuous polymerization reactors, experimental data relating polydispersity to LCB frequency can be well described with the terminal branching mechanism, but both C–H bond activation and intramolecular models fail to describe this experimental relationship. Therefore, detailed simulations confirm that the terminal branching mechanism is indeed the most likely mechanism for LCB formation when ethylene is polymerized with single‐site coordination catalysts such as metallocenes in solution polymerization reactors.  相似文献   

17.
The results of the kinetic study of melt and solution polymerization at the 1,3-dipolar cycloaddition reaction of the AB2 monomer – 2-azido-4,6-bis(prop-2-yn-1-yloxy)-[1,3,5]-triazine (ABPOT) are presented in this work as well as the results of the 13C-NMR characterization of the obtained hyperbranched poly([1,2,3]-triazole-[1,3,5]-triazine)s. It is established, that the first-shell substitution effect during polyaddition process and unusual high degree of branching (up to 0.9) of polymers synthesized in melt are held.  相似文献   

18.
A general kinetic method, based upon population balances of generating functions, is applied to the prediction of the microstructure and molecular size of non‐linear terpolymers obtained through the coordination polymerization of two monovinyl monomers and a non‐conjugated diene. A rather complex kinetic scheme involving crosslinking and long‐chain branching is considered. It is shown that even in these conditions it is possible to carry out the prediction of molecular size and mass distributions, sequence size distributions, and z‐average mean‐square radius of gyration of the polymers. The influence of some kinetic parameters on the properties of the products is studied, considering a homogeneous operation in a semi‐batch reactor. The used simulation method is able to predict these properties before and after gelation whenever it occurs.

  相似文献   


19.

The MCM‐41 and SiO2 supported TiCl4 and TiCl4/MgCl2 catalysts with different molar ratios of Mg/Ti were synthesized and used for ethylene polymerization under atmospheric pressure. The nanochannels of MCM‐41 serve as nanoscale polymerization reactor and the polyethylene nanofibers were extruded during the reaction. The nanofibers were observed in SEM micrographs of resulting polyethylene. The effect of MgCl2 on catalytic activity and thermal properties of resulting polyethylene is investigated too. In the presence of MgCl2, the catalytic activity increased and more crystalline polyethylene with higher melting points were formed. However, no fibers could be observed in the polyethylene prepared by SiO2 supported catalysts.  相似文献   

20.
合成了4种α-二亚胺镍催化剂Ar—NC(R1)C(R2)N—ArNiBr2[Ar=2,6-dimethylphenyl,R1=CnH2n+1,R2=CmH2m+1;其中Cat1:m=1,n=1;Cat2:m=2,n=1;Cat3:m=3,n=1;Cat4:m=2,n=2],考察了聚合温度、催化剂浓度和催化剂配体骨架碳原子上烷基取代基对乙烯聚合反应活性、聚合物链结构和结晶性能的影响.实验发现,当配体骨架上烷基取代基R1和R2不同时,催化剂具有较高的活性,且聚合物分子量也较高;其中,Cat2和Cat3在20℃,乙烯常压和5.8mmol/L催化剂用量下,乙烯聚合活性达1.86×103kgPE/(molNi.h)和1.92×103kgPE/(molNi.h),聚合物分子量(Mw)达6.82×105和1.019×105.聚乙烯链结构分析表明,甲基支链在聚乙烯支链中占主导地位,支化度主要受反应温度的影响;同时还发现,配体骨架碳原子上烷基取代基不同的二亚胺镍催化合成聚乙烯的长支链比例相对较高,特别是在较高反应温度40℃下,己基及以上长支链比例明显增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号