首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title dinuclear uranyl complex, (C18H38N2O6)[(UO2)2(NO3)4(OH)2]·H2O, each pair of uranyl ions in the two independent centrosymmetric dianionic dimers is bridged by the two hydroxide ions, with the nitrate ions ensuring equatorial hexagonal coordination. The di­hydro[2.2.2]­cryptand (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]­hexa­cosane) dication presents an `in–in' conformation (endo protonation) and it is hydrogen bonded to the hydroxide ions, either directly or via a water mol­ecule, resulting in the formation of linear hydrogen‐bonded polymers.  相似文献   

2.

The first crystal structures of a p-tert-butyltetrahomodioxacalix[6]arene comprising two tri-phenolic subunits separated by two ether bridges and two of its complexes with uranyl ions are reported. The doubly deprotonated macrocycle assumes a much elongated, cone-like conformation including two organic species. Two binuclear uranyl complexes are described. In both, each cation is bound to the three phenoxide oxygen atoms of a tri-phenolic subunit and to a central, bridging, carbonate or carbamate ion. The formation of the latter ions from the amines used as bases is discussed.  相似文献   

3.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

4.
Iron nitrosyl complexes with general formula [Q4N]2[Fe2(S2O3)2(NO)4] (Q = Me, Et, n-Pr, n-Bu) were synthesized by the exchange reaction of K2[Fe2(S2O3)2(NO)4] with tetraalkylammonium bromides. The molecular and crystal structure of [(CH3)4N]2[Fe2(S2O3)2(NO)4] were studied by X-ray diffraction analysis. The iron atom in the four-membered cycle of the [2Fe–2S] anion is bound to another Fe atom and to two sulfur atoms and is coordinated by two nonequivalent NO groups, each bridging sulfur atom being bound to the SO3group. The structurally equivalent iron atoms are in the state Fe1–(S= 1/2). The Mössbauer spectroscopy method shows that the complexes are diamagnetic due to the strong Fe–Fe bond. It is found that the SO3group provides higher stability of the thiosulfate anion than the anion in Roussin's red salt [Fe2S2(NO)4]2–.  相似文献   

5.
The new bis-macrocycle 1, 1′-[(1H-pyrazol-3], 5-diyl)bis(methylene)bis[1, 4, 7-triazacyclononane] ( 1 ) was synthesized and its complexation with Cu2+ studied. Potentiometric and spectrophotometric titrations indicate that, in addition to the mononuclear species [Cu(LH2)]4+, [Cu(LH)]3+, [CuL]2+, and [Cu(LH?1)]+, binuclear complexes such as [Cu2L]4+, [Cu2(LH?1)]3+, and [Cu2(LH-2)]2+ are also formed in solution. The stability constants and spectral properties of these are reported. The binuclear species [Cu2(LH?1)]3+ specifically reacts with an azide ion to give a ternary complex [Cu2(LH?1)(N3)]2+, the stability and structure of which were determined spectrophotometrically and by X-ray diffraction, respectively. The two Cu2+ ions are in a square-pyramidal coordination geometry. The axial ligand is one of the N-atoms of the 1, 4, 7-triazacyclononane ring, whereas at the base of the square pyramid, one finds the other two N-atoms of the macrocycle, one N-atom of the pyrazolide and one of the azide, both of which are bridging the two metal centres. In [Cu2(LH?1)(N3)]2+, a strong antiferromagnetic coupling is present, thus resulting in a species with a low magnetic moment of 1.36 B.M. at room temperature.  相似文献   

6.
Two novel isopropylamine‐templated uranyl chromates, [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] ( 1 ) and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)] ( 2 ) were prepared by hydrothermal method at 100 °C. The compounds were characterized by electron microprobe analysis and X‐ray diffraction crystal structure analysis [ 1 : trigonal, P31m, a = 9.646(4), c = 8.469(4) Å, V = 682.4(5) Å3; 2 : monoclinic, P21/c, a = 11.309(3), b = 11.465(3), c = 17.055(5) Å, β = 99.150(6)°, V = 2183.2(11) Å3]. The structure of 1 is based upon trimers of uranyl bipyramids interlinked by CrO4 tetrahedra to form [(UO2)3(CrO4)2O(OH)3]3– layers, whereas, in the structure of 2 , UO7 and UO6(H2O) pentagonal bipyramids are linked through CrO4 tetrahedra into the [(UO2)2(CrO4)3(H2O)]2– layers. The structures show many similarities to related uranyl selenate compounds, thus providing additional data on similarities and differences between uranyl sulfates, chromates, selenates, and molybdates.  相似文献   

7.
A new vicinal dioxime ligand with two crown-ether groups, 1,2-bis[(monoaza[15]crown-5)-N-Yl]-glyoxime(LH2), has been prepared from cyanogen di-N-oxide and monoaza[15]crown-5. Ni(II), Pd(II), and Pt(IV) complexes of LH2 with or without alkali-metal ions bound to macrocyclic groups have been isolated. The high affinity of [Pd(LH)2] and [Ni(LH)2] for the K+ ion is observed in solvent extraction experiments. A single-crystal X-ray structure confirms the postulated geometry of [Pd(LH)2]- The Pd-atom of the centro-symmetric molecule has square-planar PdN4 coordination where Pd–N distances range from 1.978(3) to 1.970(3) Å. The N–Pd–N intraligand angle is 79.9(1)°.  相似文献   

8.
Two new uranyl complexes [UO2(DPDPU)2(NO3)2](C6H5CH3) (1) and [UO2(PMBP)2 (DPDPU)](CH3C6H4CH3)0.5 (2), (DPDPU?=?N,N′-dipropyl-N,N′-diphenylurea, HPMBP?= 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized. The coordination geometry of the uranyl atom in 1 is distorted hexagonal bipyramidal, coordinated by two oxygen atoms of two DPDPU molecules and four oxygen atoms of two bidentate nitrate groups. The coordination geometry of the uranyl atom in 2 is distorted pentagonal bipyramidal, coordinated by one oxygen atom of one DPDPU molecule and four oxygen atoms of two chelating PMBP molecules.  相似文献   

9.
Single crystals of ammonium chromium(III) dioxalate dihydrate (or ammonium diaquo bis(μ‐oxalato)chromate(III)) have been obtained from aqueous solution of oxalic acid and ammonium dichromate. A pale violet crystal of good optical quality was used for the structure determination at ?100(2) and 25(2) °C, respectively. The basic crystallographic data for the low temperature data set are as follows: monoclinic, space group C2/m, a = 6.597(2) Å, b = 7.301(2) Å, c = 9.983(3) Å, β = 92.32(2)°, V = 480.5(2) Å3. The structure was solved by direct methods and refined (using anisotropic displacement parameters for all non‐hydrogen atoms) to a final residual of R1 = 0.032 for 503 independent observed reflections (I>2σ(I)). The compound is isotypic with the corresponding rubidium salt. The structure is built up from alternating layers parallel to (001) containing (NH4)+ ions or Cr(C2O4)2(H2O)2 octahedra, respectively. The corners of the octahedra consist of four O atoms from two oxalate groups and two additional water molecules. The ammonium cations (occupying Wyckoff‐site 2a) are disordered among two possible orientations. They provide linkage between different octahedral layers by hydrogen bridging. The water molecules in turn form hydrogen bridges with adjacent octahedra within the same layer. Further structural characterization included infrared spectroscopy. According to DTA/TG experiments the present compound shows several thermal processes in the range between room temperature and 900 °C.  相似文献   

10.
In the title compound, 4,7,13,16,21,24‐hexa­oxa‐1,10‐diazo­nia­bicyclo­[8.8.8]hexa­cosane dioxo[7,13,21,27‐tetra­phenyl‐3,17‐di­oxa­penta­cyclo­[23.3.1.15,9.111,15.119,23]ditriaconta‐1(29),5,7,9(30),11(31),12,14,19(32),20,22,25,27‐dodeca­ene‐29,30,31,32‐tetra­olato]uranium dimethyl sulfoxide tri­solvate, (C18H38N2O6)[U(C54H40O6)O2]·3C2H6OS, the uranyl ion is bound to the four phenoxide groups of the deprotonated p‐phenyl­tetra­homodioxacalix[4]arene ligand in a cone conformation, resulting in a dianionic complex. The diprotonated [2.2.2]cryptand counter‐ion is located in the cavity defined by the eight aromatic rings of the homooxacalixarene, where it is held by cation–anion, cation–π and possibly C—H⋯π inter­actions. Dimerization in the packing leads to the formation of sandwich assemblages in which two diprotonated [2.2.2]cryptands are encompassed by two uranyl complexes.  相似文献   

11.
Synthesis and Crystal Structure of [Na(12-Crown-4)2]2[Hg(Se4)2] · 1.5 DMF . The title compound has been prepared by the reaction of Na2Se4 with mercury acetate in DMF solution in the presence of 15-crown-5, forming dark red crystal needles. [Na(12-crown-4)2]2[Hg(Se4)2] · 1.5 DMF crystallizes in the space group C2/c with eight formula units per unit cell. The structure was determined with 3 824 observed unique reflections, R = 0.085. Lattice dimensions at - 70°C: a = 2 884(2), b = 1 407.7(7), c = 2 843(2) pm, β = 93.93(5)°. The structure consists of [Na(12-crown-4)2]+ ions with a sandwichlike coordination of the crown ether molecules, and of [Hg(Se4)2]2? ions, in which the mercury atom is coordinated by two tetraselenido ions in a chelating fashion. The [Hg(Se4)2]2? ions are arranged to infinite chains via Se…?Se contacts.  相似文献   

12.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

13.
The reaction of UO2(ClO4nH2O with 15-crown-5 and 18-crown-6 in acetonitrile yielded the title complexes. [UO2(OH2)5] [ClO4]2·3(15-crown-5)·CH3CN crystallizes in the triclinic space groupPT with (at–150°C)a=8.288(6),b=12.874(7),c=24.678(7) Å, =82.62(4), =76.06(5), =81.06(5)°, andD calc=1.67 g cm–3 forZ=2 formula units. Least-squares refinement using 6248 independent observed reflections [F o5(F o)] led toR=0.111. [UO2(OH2)5] [ClO4]2·2(18-crown-6)·2CH3CN·H2O is orthorhombicP212121 with (at–150 °C)a=12.280(2),b=17.311(7),c=22.056(3) Å,D calc=1.68 g cm–3,Z=4, andR=0.032 (3777 observed reflections). In each complex the crown ether molecules are hydrogen bonded to the water molecules of the pentagonal bipyramidal [UO2(OH2)5]2+ ions, each crown ether having exclusive use of two hydrogen atoms from one water molecule and one hydrogen from another water molecule. In the 15-crown-5 complex the remaining hydrogen bonding interaction is between one of the water molecules and one of the perchlorate anions. The solvent molecule has a close contact between the methyl group and a perchlorate anion suggesting a weak interaction. There are a total of three U-OH...OClO3 hydrogen bonds to the two perchlorate anions in [UO2(OH2)5] [ClO4]2·(18-crown-6)·2CH3CN ·H2O. The remaining coordinated water hydrogen bond is to the uncoordinated 2H2O molecule, which in turn is hydrogen bonded to a perchlorate oxygen atom and an acetonitrile nitrogen atom. One solvent methyl group interacts with an anion, the other with one of the 18-crown-6 molecules. Unlike the 15-crown-5 structure, the hydrogen bonding in this complex results in a polymeric network with formula units joined by hydrogen bonds from one of the solvent molecules and the uncoordinated water molecule. Supplementary data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82051 (37 pages).For Part 10, see reference [1].  相似文献   

14.
Uranyl nitrate hexahydrate reacts with bis­[2‐(2‐hydroxy­phenoxy)­ethoxy]­ethane (C18H22O6), denoted LH2 hereafter, in the presence of triethylamine to give ­triethylammonium aqua[2,2′‐(3,6‐dioxaoctane‐1,8‐diyldioxy)diphenolato‐κ2O,O′](nitrato‐κ2O,O′)dioxouranium(VI), (Et3NH)[UO2(H2O)L(NO3)], which possesses a symmetry plane. The uranyl ion is coordinated to the two phenoxide O atoms, a nitrate ion and a water mol­ecule (first sphere); the water mol­ecule is itself held in the crown ether chain by hydrogen‐bonding interactions, thus ensuring second‐sphere coordination by the ligand L.  相似文献   

15.
The crystal structure of the Rb analogue of grimselite, rubidium sodium uranyl tricarbonate hydrate, Rb6Na2[(UO2)(CO3)3]2(H2O), consists of a uranyl hexagonal bipyramid that shares three non‐adjacent equatorial edges with carbonate triangles, resulting in a uranyl tricarbonate cluster of composition [(UO2)(CO3)3)]. These uranyl tricarbonate clusters form layers perpendicular to [001] and are interconnected by NaO8 polyhedra. The title compound is isostructural with grimselite, with a reduced occupancy of the H2O site (25% versus 50% in grimselite).  相似文献   

16.
The oligoalumosiloxanes {[Ph2SiO]8[Al(O)OH]4·2,5Et2O·HOtBu} ( 6 ) and {[Ph2SiO]8[Al(O)OH]4·2Et2O·2HOiPr} ( 7 ) have been obtained from the reaction of diphenylsilanediol with aluminium‐tritert‐butoxide and aluminium‐triiso‐propoxide in ethyl ether with reasonable yields. In a 1:1 molar mixture of toluene and the respective alcohol (iso‐propanol or tert‐butanol), the ethyl ether molecules in {[Ph2SiO]8[Al(O)OH]4·4Et2O}, in 6 or 7 can be completely displaced forming the compounds [Ph2SiO]8[Al(O)OH]4·4HOiPr ( 8 ) and [Ph2SiO]8[Al(O)OH]4·nHOtBu ( 9 ). Whereas 6 , 7 and 8 are crystalline, 9 is obtained as a viscous liquid. An X‐ray structure determination on {[Ph2SiO]8[Al(O)OH]4·3Et2O·HOtBu} reveals different bonding modes of the diethyl ether molecules to the oligoalumosiloxane compared to the tert‐butanol, which forms two hydrogen bonds (one to the OH‐group of the inner Al4(OH)4 cycle and one through the alcohol OH‐group to a Si–O–Al moiety. The alcohol adducts have been characterized in solution through 1H‐, 13C‐ and 29Si‐NMR and show dynamic equilibria between the oligoalumosiloxane [Ph2SiO]8[Al(O)OH]4 and the alcohol molecules.  相似文献   

17.
Summary Oxomolybdenum(V) complexes of the type (LH4) [MoOCl5] (where LH2 = dimethylene bis-2-benzimidazole or tetramethylene bis-2-benzimidazole), [MoOCl3(LH2)] (where LH2 = tetramethylene bis-2-benzimidazole), [(Mo2O4Cl2-(H2O)3)2(LH2)] (where LH2 = dimethylene bis-2-benzimidazole, tetramethylene bis-2-benzimidazole or hexamethylene bis-2-benzimidazole) and [Mo2O3Cl4(LH2)2] (where LH2 = tetramethylene bis-5-nitro-2-benzimidazole) were prepared and characterised. The mononuclear complexes show u.v.-vis. absorptions characteristic of octahedral molybdenum(V). The dinuclear complexes do not absorb in the visible region, possibly due to the presence of an Mo2O 4 2 +} core, which is also indicated by their diamagnetic behaviour. The biological activities of the free ligands and their complexes have been studied.  相似文献   

18.
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043.  相似文献   

19.
The Crystal Structures of {Li3(12-crown-4)2[HC(CN)2]3}, {Na(15-crown-5)[HC(CN)2]}, and {NaN(nBu)4[HC(CN)2]2 · THF} The preparation and the crystal structures of the title compounds 1 — 3 are described. 1 forms a polymeric chain structure, in which one of the lithium ions is linked by Li…NCC(H)CN… bridges. The remaining lithium ions form (12-crown-4)Li[NCC(H)CN] units, which are coordinated by one of the nitrogen atoms of the dicyanomethanide ions with the lithium ions of the chain. 2 forms an ion pair, in which the sodium ion is coordinated by the five oxygen atoms of the crown ether molecule and by one nitrogen atom of the dicyanomethanide ion. 3 has a threedimensional network, in which the sodium ions are coordinated in a distorted tetrahedral manner by the nitrogen atoms of the dicyanomethanide ions. In the cavities of the network the tetrabutylammonium ions and the THF molecules are found.  相似文献   

20.
Red single crystals of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 (triclinic, , Z = 1, a = 844.02(9), b = 908.50(9), c = 939.49(8) pm, α = 107.73(1)°, β = 112.10(1)°, γ = 103.53(1)°) were obtained by the reaction of [Gd(NO3)(H2O)7][PtCl6]·4H2O with sulfuric acid at 320 °C in a sealed glass ampoule. In the crystal structure, Pt2 dumbbells are coordinated by four chelating sulfate groups and two monodentate hydrogensulfate ions. Two further HSO4? ions are not bonded to the Pt2 dumbbell. The Gd3+ ions are eightfold coordinated by oxygen atoms. The IR data of Gd2[Pt2(SO4)4(HSO4)2](HSO4)2 are typical for these type of compounds. The thermal decomposition of the compound leads to elemental platinum and Gd2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号