首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
周杰  何锡文  郭洪声 《中国化学》2000,18(4):482-488
Using acrylamide as hydrogen bonding functional monomer and (5R)-5-benzylhydantoin as template, a molecularly imprinted polymer was prepared in a polar solvent, which exhibited good enantiomeric recognition properties. The binding characteristics and selectivity of the polymer were evaluated by batch methods. Scatchard analysis showed that two classes of binding sites were produced in the polymer matrix and their dissociation constants were calculated to be 3.5 × 10-5mol/L and 4.3 ×10-4 mol/L, respectively, by utilizing the model of multiple independent classes of binding sites. These results were more reasonable than those obtained by Scatchard analysis , which was in agreement with the prediction of the binding characteristics of the polymer by exploring the effect of acrylamide on UV spectra of (5R)-5-benzylhydantoin. The substrate- and enantio-selectivity of the polymer was investigated. Finally, the study of effect of water on the chiral separation factor of the polymer further proved that the hy  相似文献   

2.
Herein we report the development of a new series of surface bound anion sensors exploiting the urea or thiourea motif capable of binding anions through hydrogen bonding interactions. The use of high resolution magic angle spinning 1H NMR allows the direct comparison of the anion binding properties of these receptors in solution versus those tethered to polymer resins. Some intramolecular hydrogen bonding and solvent effects were observed at the solution:surface interface however in general the anion binding properties of the polymer bound urea and thiourea receptors were maintained.  相似文献   

3.
In order to develop more efficient preparation technologies for imprinted polymers (MIPs), the nature of pre-polymerization and molecular recognition in MIP was investigated by molecular dynamics modeling (MD), 1H NMR, FTIR and some indirect techniques. Phenol was used as the template for the study of mechanism through the analysis of hydrogen bonding, hydrophobic and π–π bonding interaction. The 4-vinylpyridine-based MIP had the highest selectivity to its phenol template. Hydrogen bonding was proved to be present by characterizing the pre-polymerization complex and evaluating the recognition process and the effects of rebinding solvents were also studied. It was found that a good rebinding solvent should have less affinity with both template and polymer, but good solubility. MD modeling and some indirect techniques demonstrated that 4-vinylpyridine-based MIP recognized phenol mainly through hydrophobic interactions when the rebinding medium was water, while hydrogen bonding was present in the recognition process when the rebinding solvent was n-hexane.  相似文献   

4.
Precise binding towards structurally similar substrates is a common feature of biomolecular recognition. However, achieving such selectivity—especially in distinguishing subtle differences in substrates—with synthetic hosts can be quite challenging. Herein, we report a novel design strategy involving the combination of different rigid skeletons to adjust the distance between recognition sites within the cavity, which allows for the highly selective recognition of hydrogen-bonding complementary substrates, such as 4-chromanone. X-ray single-crystal structures and density functional theory calculations confirmed that the distance of endo-functionalized groups within the rigid cavity is crucial for achieving high binding selectivity through hydrogen bonding. The thermodynamic data and molecular dynamics simulations revealed a significant influence of the hydrophobic cavity on the binding affinity. The new receptor possesses both high selectivity and high affinity, which provide valuable insights for the design of customized receptors.  相似文献   

5.
A systematic study on the anion‐binding properties of acyclic halogen‐ and hydrogen‐bonding bis‐triazolium carbazole receptors is described. The halide‐binding potency of halogen‐bonding bis‐iodotriazolium carbazole receptors was found to be far superior to their hydrogen‐bonding bis‐triazolium‐based analogues. This led to the synthesis of a mixed halogen‐ and hydrogen‐bonding rotaxane host containing a bis‐iodotriazolium carbazole axle component. The rotaxane’s anion recognition properties, determined by 1H NMR titration experiments in a competitive aqueous solvent mixture, demonstrated the preorganised halogen‐bonding interlocked host cavity to be halide‐selective, with a strong binding affinity for bromide.  相似文献   

6.
New tricyclic spacers, readily available through fourfold Mannich reaction of substituted dibenzyl ketones, were introduced into a series of ten H2O-soluble cyclophanes with spacious preorganized cavity binding sites. These spacers provide H2O-solubility with amine or crown-ether functionality remote from the cyclophane cavity while directing functional groups such as keto or OH groups in a precise geometrical array inside the cavity. The cyclophanes were designed to include organic substrates via a combination of apolar and specific polar functional group interactions. The X-ray crystal-structure analysis of the tritopic receptor 18 with one potential neutral-molecule and two cation-binding sites showed a large rectangular open cavity with dimensions of roughly 9 × 14 Å and a spacing of 9.7 Å between the O-atoms of two convergent C?O groups. Despite the binding-site preorganization, cyclophanes incorporating two of the new spacers did not show any substrate binding in aqueous solutions. The failure of these systems to function as receptors is mainly due to steric hindrance to important cyclophane aromatic ring-guest interactions. Also, the favorable solvation of the intracavity functionality may prevent the formation of complexes. Hybrid receptors constructed from the novel spacers and diphenylmethane units were found to bind flat aromatic substrates as well as bulky [4.2]paracyclophanes. The observed large differences in stability (ΔΔG°> 2 kcal mol?1) of the complexes formed by three structurally closely related hybrid receptors with convergent C?O, OH or CH2 groups and 6-hydroxynaphthalene-2-carbonitrile as guest can be explained by a strong solvation effect of the convergent functional groups on apolar inclusion complexation.  相似文献   

7.
The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA) as functional monomer. The polymers were characterized by IR spectra, thermal-weight analysis, scanning electron microscope and laser particle size analysis. The properties of imprinted polymers were investigated in different organic phases and aqueous media. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions) between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition; whereas in the aqueous medium, a considerable recognition effect was also obtained where the ionic (electrostatic) interaction and hydrophobic interaction play an important role. The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine. __________ Translated from Zhongshan Dcocue Xuebao/Acta Scientianum Natralium University Sunyatseni, 2005, 44(3)(in Chinese)  相似文献   

8.
Protein-RNA interactions perform diverse functions within the cell. Understanding the recognition mechanism of protein-RNA complexes is a challenging task in molecular and computational biology. In this work, we have developed an energy based approach for identifying the binding sites and important residues for binding in protein-RNA complexes. The new approach considers the repulsive interactions as well as the effect of distance between the atoms in protein and RNA in terms of interaction energy, which are not considered in traditional distance based methods to identify the binding sites. We found that the positively charged, polar and aromatic residues are important for binding. These residues influence to form electrostatic, hydrogen bonding and stacking interactions. Our observation has been verified with the experimental binding specificity of protein-RNA complexes and found good agreement with experiments. Further, the propensities of residues/nucleotides in the binding sites of proteins/RNA and their atomic contributions have been derived. Based on these results we have proposed a novel mechanism for the recognition of protein-RNA complexes: the charged and polar residues in proteins initiate recognition with RNA by making electrostatic and hydrogen bonding interactions between them; the aromatic side chains tend to form aromatic-aromatic interactions and the hydrophobic residues aid to stabilize the complex.  相似文献   

9.
10.
1‐Butyl‐3‐[(3‐trimethoxysilyl)propyl]imidazolium chloride ionic liquid was synthesized and chemically modified onto the inner wall of a fused capillary column as a stationary phase for gas chromatography. The 1‐butyl‐3‐[(3‐trimethoxysilyl)propyl]imidazolium chloride ionic liquid bonded capillary column was evaluated in detail. The results revealed that the ionic liquid bonded capillary column exhibited high column efficiency of 1.08 × 104 plates/m, and good chromatographic separation selectivity (α ) for polar and non‐polar substances, and a good thermal stability between room temperature and 400°C. Moreover, the determination of thermodynamic parameters and the linear solvation energy relationship were further carried out. The results indicated that the chromatographic retention of each probe molecule on the ionic liquid bonded stationary phase was an enthalpy‐driven process, and the system constants of the linear solvation energy relationship signified that the dispersion interaction, the hydrogen bonding acidity and hydrogen bonding basicity were dominant interactions between probes and stationary phase among five interactions during the chromatographic separation. However, the contribution of each specific interaction for the stationary phase is ranked as the dispersion interaction > the hydrogen bonding basicity > the hydrogen bonding acidity.  相似文献   

11.
Versatile concave receptors with binding properties that can be controlled by external stimuli are rare. Herein, we report on a calix[6]crypturea ( 1 ) that features two different binding sites in close proximity, that is, a tris(2‐aminoethyl)amine (tren)‐based tris‐ureido cap that provides convergent hydrogen‐bond‐donor sites and a hydrophobic cavity suitable for the inclusion of organic guests. The binding properties of this heteroditopic receptor have been evaluated by NMR spectroscopic studies. Compound 1 behaves as a remarkably versatile host that strongly binds neutral molecules, anions, or contact ion pairs. Within each family of guests, compound 1 is able to discriminate between different guests with a high degree of selectivity. Indeed, neutral molecules that possess hydrogen‐bond donor and acceptor groups, chloride anions, and linear ammonium ions associated to F? or Cl? are particularly well recognized. In comparison with all the related receptors, compound 1 displays several unique features: 1) charged or neutral species are also recognized in polar or protic solvents, 2) thanks to the flexibility of the calixarene structure, induced‐fit processes allow the binding of large, biologically relevant ammonium salts such as neurotransmitters, and 3) the protonation of the basic cap leads to a positively charged receptor, 1? H+, which is reluctant to host anions and in which host properties are now governed by strong charge–dipole interactions with the guests. In other words, compound 1 presents an acid–base controllable tris‐ureido recognition site protected by a hydrophobic corridor that can select guests through induced‐fit processes. Thus, its versatile host properties can be allosterically controlled by protonation and selective guest‐switching processes are possible. To illustrate all these remarkable features, a sophisticated three‐pole supramolecular switch, based on the interconversion of host–guest systems displaying either charged or neutral guests, is described.  相似文献   

12.
The development of halogen-bond-based ditopic receptors capable of binding simultaneously both a cation and an anion has attracted recent research interest. In this work, the crown-ether receptor 1, which consists of an iodo-trizole moiety for anion recognition through halogen bonding and a Lewis-basic center for cation binding, was investigated using density functional theory calculations. The structural and energetic features for the complexes of 1 with single cations, single halide anions, and ion pairs were explored. Intermolecular interactions in these complexes were systematically analyzed by the atoms in molecules and noncovalent interaction index methods. The presence of the coordinated cation significantly increases the anion-binding affinity, while the binding of halide anions has a slight influence on the cation-binding affinity. Anti-cooperative effects were found in the ion-pair recognition of 1, due to the strong attraction between the two counterions in the complexes. The solvent weakens the interaction strength considerably, and anti-cooperativity becomes very small in solvent. The results reported in this work are of fundamental importance in the design of ion-pair receptors based on halogen bonding.  相似文献   

13.
Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.  相似文献   

14.
Two-armed neutral anion receptors (4,5), calix[4]arenes beating thiourea and amide binding sites, were prepared and examined their anion-binding ability by the UV-vis spectra. The results of non-linear curve fitting and Job plot indicate that 4 or 5 forms 1:1 stoichiometry complex with fluoride by hydrogen bonding interactions. Receptors 4 and 5 have an excellent selectivity for fluoride but have no binding ability with acetate, dihydrogen phosphate and the halogen anions (Cl^-,Br^-,I^-).  相似文献   

15.
A new tripodal receptor for anion sensing based on amide-pyridinium as recognition site and nitro-benzene as signaling unit was designed and successfully synthesized. This receptor showed high selectivity and strong binding affinity toward AcO? over the investigated anions, especially over H2PO4 ?. Addition of AcO? induced clear color change of solution from colorless to yellow, realizing the ??naked-eye?? detection. UV?CVis and 1H NMR experiments indicated the selectivity might origin from the synergistic effects arising from hydrogen bonding, electrostatic interactions and conformational change.  相似文献   

16.
《Electrophoresis》2018,39(2):370-376
Poly(stearyl methacrylate‐co‐methacrylic acid) (P(SMA‐co‐MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n‐octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1‐butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n‐ and π‐electrons interaction to the analytes.  相似文献   

17.
Dimesitylmethane-based compounds 917, incorporating four groups capable of serving as hydrogen bonding sites, such as pyrazole, pyrimidine, imidazole, indole and aminoalkyl groups, were prepared and their ability to complex selected carbohydrates tested. The tetrasubstituted dimesitylmethane scaffold provides a cavity of a correct shape and size for disaccharide encapsulation and its aromatic units are able to participate in CH-π interactions with the sugar substrate. First binding studies confirmed the expected di- vs monosaccharide binding preference of this type of compounds and their tendency to form strong complexes with maltoside.  相似文献   

18.
The adsorption behavior of p-aminobenzoic acid (PABA) molecules on a silver-coated alumina surface-enhanced Raman scattering (SERS) substrate was investigated. For spotted PABA and PABA in non-polar solvents, the PABA molecule is adsorbed flat on the surface of the SERS substrate. In this orientation, the benzene ring is π-bonded to the substrate, and the molecule is further anchored to the substrate by the binding of the lone pairs of NH2 and COO groups onto the metal surface. On the other hand, the adsorption behavior of PABA in a polar solvent is greatly influenced by the hydrogen bonding of the amine group with the polar solvent. In this orientation, the molecule is preferentially adsorbed through the COO± and assumes a non-flat orientation on the metal surface.  相似文献   

19.
Catalysis by small molecules (≤1000 Da, 10?9 m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation–π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation–π interaction exhibits a typical binding affinity of several kcal mol?1 with substantial directionality. These properties render it attractive as a design element for the development of small‐molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation–π interaction in catalysis.  相似文献   

20.
硫脲类阴离子受体的研究进展   总被引:13,自引:0,他引:13  
阴离子识别是超分子化学研究的重要内容之一,其关键环节是构筑可识别阴离子的结合受体,后者以非共价键力如静电作用、疏水作用、氢键等与阴离子结合.本文详细评述了近5年来硫脲类阴离子识别受体的设计、结构及其阴离子识别作用的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号