首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier attempts to assess the complexity of molecules are analyzed and summarized in a number of definitions of general and topological complexity. A concept which specifies topological complexity as overall connectivity, and generalizes the idea of molecular connectivities of Randic, Kier, and Hall, is presented. Two overall connectivity indices, TC and TC1, are defined as the connectivity (the sum of the vertex degrees) of all connected subgraphs in the molecular graph. The contributions to TC and TC1, which originate from all subgraphs having the same number of edges e, form two sets of eth-order overall connectivities, eTC and eTC1. The total number of subgraphs K is also analyzed as a complexity measure, and the vector of its eth-order components, eK, is examined as well. The TC, TC1, and K indices match very well the increase in molecular complexity with the increase in the number of atoms and, at a constant number of atoms, with the increased degree of branching and cyclicity of the molecular skeleton, as well as with the multiplicity of bonds and the presence of heteroatoms. The potential of the three sets of eth-order complexities for applications to QSPR was tested by the modeling of 10 alkane properties (boiling point, critical temperature, critical pressure, critical volume, molar volume, molecular refraction, heat of formation, heat of vaporization, heat of atomization, and surface tension), in parallel with Kier and Hall's molecular connectivity indices (k)chi. The topological complexity indices were shown to outperform molecular connectivity indices in 44 out of the 50 pairs of models compared, including all models with four and five parameters.  相似文献   

2.
3.
Recently, the concept of overall connectivity of a graph G, TC(G), was introduced as the sum of vertex degrees of all subgraphs of G. The approach of more detailed characterization of molecular topology by accounting for all substructures is extended here to the concept of overall distance OW(G) of a graph G, defined as the sum of distances in all subgraphs of G, as well as the sum of eth-order terms, (e)OW(G), with e being the number of edges in the subgraph. Analytical expressions are presented for OW(G) of several basic classes of graphs. The overall distance is analyzed as a measure of topological complexity in acyclic and cyclic structures. The potential usefulness of the components of this generalized Wiener index in QSPR/QSAR is evaluated by its correlation with a number of properties of C3-C8 alkanes and by a favorable comparison with models based on molecular connectivity indices.  相似文献   

4.
We put forward a novel index of molecular complexity, ξ, taking into account the symmetry of a molecular graph and the specificity of structural components considered. The ξ index is defined as the sum of augmented valences of all mutually nonequivalent vertices in a molecular graph. The augmented valence of a vertex in a graph is the sum of its valence and valences of all neighboring vertices with the weight 1/2d depending on their distance, d, from the vertex. The ξ index is examined on the set of octane isomers and some special classes of graphs. It is also compared with a certain number of alternative complexity measures considered in the literature. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

5.
6.
7.
Three newly defined information theoretic topological indices, namely “degree complexity (Id),” “graph vertex complexity (HV),” and “graph distance complexity (HD)” along with three other information indices have been used to study their discriminating power of 45 trees and 19 monocyclic graphs. It is found that the newly defined indices have satisfactory discriminating power while HD has been found to be the only index to discriminate all the graphs studied.  相似文献   

8.
An iterative algorithm is described for finding topological equivalence, ordering, and canonical numbering of vertexes (atoms) in molecular graphs. Like the Morgan algorithm, it is based on extended connectivities but: (i) the latter are used hierarchically, i. e., the discrimination in the next iteration is carried out only for the vertices having the same extended connectivities (ranks) at the previous iteration; (ii) at equal extended connectivities, additional discrimination is introduced by the ranks of adjacent vertices; (iii) there is no “best name” search; (iv) three levels of complexity of chemical structures are distinguished and handled by different procedures. Two schemes of application of HOC procedures are presented: one directed towards a fast canonical numbering for coding systems, and another one yielding levels of topological equivalence allowing a unique topological representation of the molecule with possible applications to similarity search, structure-activity correlations, etc.  相似文献   

9.
10.
11.
The energy of a molecular graph G is defined as the sum of the absolute values of the eigenvalues of A(G), where A(G) is the adjacency matrix of this graph. This article characterizes conjugated chemical trees with prescribed diameter and minimal energies and presents explicit expressions of their Hosoya indices. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
Recently, four new types of vertex invariants, namelyu, v, x, andy, were defined on the basis of information on graph distances. They were combined to give four highly selective topological indices:U, V, X, andY. The degeneracy, i.e. equal values for nonisomorphic graphs, of the four topological indices is investigated. A structural condition and a graphical method which gives pairs of molecular graphs with identicalU, V, X, andY topological indices are introduced. The smallest pair of 4-trees representing alkanes having degeneratedU, V, X, andY values consists of trees with eighteen vertices.  相似文献   

13.
The concept of overall connectivity of a graph G was extended here to the definition of the overall hyper-Wiener index OWW(G) of a graph G, defined as the sum of the hyper-Wiener indexes in all subgraphs of G, as well as the sum of eth-order terms, e OWW(G), with e being the number of edges in the subgraph. The potential usefulness of the overall hyper-Wiener index in QSAR/QSPR is evaluated by its correlation with a number of properties of C3-C8 alkanes and cycloalkanes.  相似文献   

14.
A new approach is presented for obtaining graph invariants which have very high discriminating ability for different vertices within a graph. These invariants are obtained as the solution set (local invariant set, LOIS) of a system of linear equationsQ · X = R, whereQ is a topological matrix derived from the adjacency matrix of the graph, andR is a column vector which encodes either a topological property (vertex degree, number of vertices in the graph, distance sum) or a chemical property (atomic number). Twenty examples of LOOIs are given and their degeneracy and ordering ability of vertices is discussed. Interestingly, in some cases the ordering of vertices obtained by means of these invariants parallels closely the ordering from an entirely different procedure based on Hierarchically Ordered Extended Connectivities which was recently reported. New topological indices are easily constructed from LOISs. Excellent correlations are obtained for the boiling points and vaporization enthalpies of alkanesversus the topological index representing the sum of local vertex invariants. Les spectacular correlations with NMR chemical shifts, liquid phase density, partial molal volumes, motor octane numbers of alkanes or cavity surface areas of alcohols emphasize, however, the potential of this approach, which remains to be developed in the near future.  相似文献   

15.
The problem of finding all nonisomorphic subgraphs of a given graph (all distinct substructures of a given molecular structure) is discussed. A computer program is introduced that first generates all connected subgraphs and then uses a combination of well-discriminating graph invariants to eliminate duplicates. The program is broadly applicable, in particular for molecular graphs which may or may not contain unsaturation or heteroatoms. The number of distinct substructures (Ns), proposed earlier as a measure of a compound's complexity which takes into account its symmetry, is thus automatically obtained. As was to be expected, due to the nature of the problem the computational effort increases exponentially with problem size, whence in most cases complexity measures other than Ns are to be preferred.  相似文献   

16.
17.
Two new types of real (i.e., noninteger) local vertex invariants (LOVIs), denoted by ci and ci and called distance-enhanced exponential connectivities, are defined via eqs. (1)–(3) and (1′)–(3′), respectively. Only the case when the exponent z equals 1 in eqs. (3) and (3′) is discussed in detail. Both these LOVIs span the range from 0–1, but their dependence upon topology is fairly different, as seen from Table II, where ci and ci values for all heptane and octane isomers are displayed. From these LOVIs, by simple summation over all graph vertices two new topological indexes (TIs), denoted by XC and XC′, respectively, are obtained. Their intermolecular ordering of all alkanes with four to nine carbon atoms is discussed. On their basis, correlations with boiling points and critical pressures of alkanes are presented. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
We present a novel matrix representation of graphs based on the count of equal‐distance common vertices to each pair of vertices in a graph. The element (i, j) of this matrix is defined as the number of vertices at the same distance from vertices (i, j). As illustrated on smaller alkanes, these novel matrices are very sensitive to molecular branching and the distribution of vertices in a graph. In particular, we show that ordered row sums of these novel matrices can facilitate solving graph isomorphism for acyclic graphs. This has been illustrated on all undecane isomers C11H24 having the same path counts (total of 25 molecules), on pair of graphs on 18 vertices having the same distance degree sequences (Slater's graphs), as well as two graphs on 21 vertices having identical several topological indices derived from information on distances between vertices. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A novel topological index W(F) is defined by the matrices X, W, and L as W(F) = XWL. Where L is a column vector expressing the characteristic of vertices in the molecule; X is a row vector expressing the bonding characteristics between adjacent atoms; W is a reciprocal distance matrix. The topological index W(F), based on the distance-related matrix of a molecular graph, is used to code the structural environment of each atom type in a molecular graph. The good QSPR/QSAR models have been obtained for the properties such as standard formation enthalpy of inorganic compounds and methyl halides, retention indices of gas chromatography of multiple bond-containing hydrocarbons, aqueous solubility, and octanol/water partition of benzene halides. These models indicate that the idea of using multiple matrices to define the modified Wiener index is valid and successful.  相似文献   

20.
A topological index is a numerical parameter that is derived mathematically from a graph structure. In chemical graph theory, these indices are used to quantify the chemical properties of chemical compounds. We compute the first and second temperature, hyper temperature indices, the sum connectivity temperature index, the product connectivity temperature index, the reciprocal product connectivity temperature index and the F temperature index of a molecular graph silicate network and silicate chain network. Furthermore, a QSPR study of the key topological indices is provided, and it is demonstrated that these topological indices are substantially linked with the physicochemical features of COVID-19 medicines. This theoretical method to find the temperature indices may help chemists and others in the pharmaceutical industry forecast the properties of silicate networks and silicate chain networks before trying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号